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Abstract. The properties €y of Zahariuta (or DN of Vogt) and D,, for the space £(K)
of Whitney functions on Cantor type sets are considered. We give a criterion for £(K) to
have these properties for two cases. As application, it is shown that there is a continuum
of such spaces which are pairwise non-isomorphic.

I. Introduction.

Let K C R be a perfect compact set. By £(K) we denote the space of infinitely differen-
tiable Whitney functions on K. This is the space of functions f : K — R extendable to
C>°-functions on R equipped with the topology defined by the sequence of norms

Ra£)(®)
||f||q=|f|q+sup{%: ryek x%y,iéq}, 0=0.1....
where | f|, = sup{|fY(2)| : 7 € K,j < ¢} and
“ k)
RIf(x) = F(@) — T3f(@) = fa) - 3 T Dy
k=0 '

is the Taylor remainder. With
Ug={fe&(K):|fl, <1}

the sequence (U,) needs not to decrease, but the sets eU, with ¢ > 0 and ¢ € N constitute
a basis of neighborhoods of zero in £(K). It was shown in [8] by Tidten and in [12] by
Vogt that the space £(K) is isomorphic to the space

§ = {x = (&) ¢ llzlly = Y éaln? < o0, vq}

n=1



of rapidly decreasing sequences if and only if there is a linear continuous extension operator
L:E&(K)— C*R). By £(K) we denote the Banach space of r times differentiable
Whitney jets on K equipped with the norm || - ||..

We denote N = {1,2,...} and Z* = {0,1,2,...}. We will consider Cantor type compact
sets which are described as follows: let [ = (1,)%2, be a sequence of positive numbers
and N = (N,,)22, be a sequence of integers N,, > 2 such that [y = 1 and N,l,, < l,, 1
as well as 41, < I,_1. Let K = K(I,N) be the Cantor type set K = N /K, where
Ky =10,1] = [0,lp] and K is obtained from K by deleting N; — 1 equal open intervals
of total length Iy — Nyl uniformly. Thus K is the union of N; closed intervals I ;, each
of length [; which are distributed uniformly. In turn K, is a union of Ny N, ... N, closed
intervals I, of length [, and K, is obtained from K,, by deleting uniformly N,; — 1
equal open intervals of total length l,, —l,,+1 NV, 11 from each I,, , k =1,2,..., NyNo ... N,,.
This way for the classical Cantor set we have [,, = 37" and N,, = 2. We will consider two
cases: (i) N,, =2 for all n, (ii) lim, . N, = 0.

The following lemma is in [4] (see also [5]).

Lemma 1. Let g(x) = vazl(:v — aj), where |[v —a;| <1 < 1,7 =1,...,N. Let
f(z) = g(x)9. Then for n < N - ¢

[ @) < C(N, q,m) V7,
If in addition n < ¢, then
[f™ (@) < O(N,q,n) - |g ()",
where

(N-q)!
(N-qg—n)l

The following lemma is a variation of Lemma 2 in [5] with a very similar proof. Hence
the proof is omitted.

C(N,q,n) =

Lemma 2. Let K C R be a compact set containing r 4+ 1 distinct points xg, x1,...,x,
such that for some finite sequence 0 < 11 < 1hy < -+ - < Wy,
Vi

Vi gy —ap| <bifork=0,1,....i—1, i=1,2,....n
M_|:z: x| < 1y for i i r

Then for all k <r and f € £"(K)

| F O (o)l < CUT*I flo + Cor I £

where the constant C' = 2kM"r!/(r — k)!.
Now we consider a linear topological invariant introduced by Vogt [13] and Tidten [9]
(and called DN,, by them) and by Goncharov and Zahariuta [2], [19] and [6].



Let ¢ : R, — R, be an increasing function, ¢(¢) > t. A Fréchet space X with a
fundamental increasing system of seminorms (|| - [[,)52, has the property D, if dp €
Z,N¥qeNdre Nm>0,C >0 such that

C
1Flly < @™ @Al + S l1fll, ¢8>0, f € X. (1)

We will use as well the multiplicative version of this property (see e.g. [6]):

e m< ||f||r>
Ip Vg 3 C: C 1, V 0.
pYa3nm e\ G, ) 2

Examples of continua of pairwise non-isomorphic spaces of C* ([9], [6]) and Whitney ([7],
[5]) functions were found by means of these invariants.

The invariant D, appeared as a generalization of the class D; (see [15]) or the property
DN ([10]). In the case ¢(t) = t the invariant D, coincides with Qs ([18]) or DN ([11]).
The strong form of the condition (1) with m = 1 coincides with the property DN,, ([13],
9)).

We define «,, = hirll’;:l Thus a,, > 1and [,y = (9" In [4] the case a,, = o # 2
was considered. Applying Vogt-Tidten’s [8] characterization of the extension property in
terms of the invariant DN, it was proved in [4] that for the space £(K) there exists a
linear continuous extension operator L : E(K) — C*°(R) if and only if o < 2.

II. The first model case: bounded (N,).

First let us consider the case in which the sequence (V,) is bounded. Without loss of
generality we assume that N,, = 2 since for arbitrary bounded sequence (N,,) we can repeat
the proof with minor modifications. For the weak property DN we have the following
geometric characterization.

Theorem 1. Let N,, = 2 for all n. The space £(K) has property Qs (or DN) if and only
if lim sup o, < 00.

Proof. Necessity. The proof of this part is similar to the proof of Theorem 2 in [4] We
assume that lim sup «,, = oo and show that

R
k=oo || fiellg \ 1/l
Fix p, let ¢ = p + 1. Fix r, R such that ¢ < r. Find s such that 257! < 2 < 2°. Since
lim sup o, = o0, there is a subsequence (ng) of integers such that «,,, " co. Fix k large
enough and let n = ny, + 1. Consider the first 2° intervals of K,; I,1 = [0,1,], 2 =
U1 — Uy o]y ooy Lnos = [ln—s — Uy, l—s]. Let ¢; be the midpoint of 1, ;,5 =1,2,...,2°.
Set fr(x) = (g(z))? where

o) = { [l —¢) ifxeKN[0,,

0 otherwise.



Upper bound of || fi|p- Fix i < p. As in [4], 1fi(z)] < Cp(l, )" and | fi]p, < Cp(l,\)TP =
Cplo\ where X\ =1, 112 l2S . With

(2 fi) @ ()]

|z — y|p~

Ap = i<pxFy, v,ye K
we have A, <2C,l,\ if | —vy| <l,—1 —21,. If |x —y| > [,_1 — 2[,, then

7 t
W) K@) 1
p < —i+ | —t
& —ylp (t—0)! Jo -yl

A

t=1

< c&ﬂnA”_p{<J;iiA)pi‘*§i<tiz> <kj—iA)pt}'

Since a,,—1 = ay, is large and therefore 3l,, < [,,_; we have that [,(A +2) < 3, < [,,_1,
SO Iy A < lp—1 — 21, < |z — y| which implies [, \/|z — y| < 1. Thus the expression in { }
above is less than 14+e. Thus 4, < C,(1+¢€)(l, A)?? and || fi|l, < 5C,(L, A\)TP = 5C,1,A\.
Since 31, < l,_1, we have l,, < l,_1/2, and so by [4] Theorem 2, || fx|l, > ¢! 272" A\? and

Thus for some constant M we have

HnM(W&M) I\ 1 L

< My

1flla \ M fllg AT\t A¢

where C' = p+ (p+1)R. We have [, = [0"]" = ... =" """ and so A = I*__ where

-2 -1
K= Qn o0y 3 Qp_s+ 20, 3 Qs+ -+ 2° Qp—s + 2°7.

So we get Q = M (O 127 ==C"  Ohgerve that & is a sum of s terms and each of them
is less than 2 'a,,_o - - - avy—s. Then

10— ... Op_s — CK = g ... ap_g(0p_1 — C52°71) — 00

as s is fixed. Thus the exponent of [,,_, tends to oo and so ) — 0 as n — oc.
Sufficiency. If limsup o, < 00, then for some a < co we have a,, < « for all n.

Let p=0. Given ¢, let ¢ = 2q, r =4qg and R =a" + 1. Fix t > 1 and find n such that
ln—rs1 <1/t <l,_,. Fix 2y € K and find intervals I,,, ; C K, such that

Xo € In,jo C [nfl,jl cC...C In—(r—l),j—(r—l)-

Let 21 be the end point of I, ;, which is farther from . Then clearly [,,/2 < |z —z¢| < [,,.
Let x4 be the end point of I,,_; ;, which is farther from z,. Then

ln—l

Ly
— .I‘0| <,—; and nTl < |$2 - 171| <lpy



since x; and xy belong to different intervals I,, ; and I, j in I,,_; ;. We continue in this
way and choose the points z1, x2,...,z,. Then

ly_i ‘ .
Tﬂg|xi—xk|§ln_i+1, k=0,1,...,i—1;,i=1,2,...,7.

So we can apply Lemma 2 with ¢; = [,_;+1 and for all £ < ¢; obtain
| f® (o)l < CLFIflo+ CLZE I -
Since I, = [,"1' = ... =17 > 090 > 17 for all k < ¢; we have

Cy
2| fll»

C
< Cit'iflo+ 2l flle = S(2).

|fE (o)t =F < Oyt FrE £+

Then as in the last paragraph of the proof of Theorem 3 in [4] we have ||f]|, < CoS(t),
which proves the theorem.

O
In the next theorem we give a necessary and sufficient condition for the space £(K) to
have the property D,
Theorem 2. Assume N,, = 2 for all n and lim,, ., @, = co. Then E(K) has property
D, if and only if the following condition is true:

Vk3IM: 1, > ¢ M 1) Vn.

Proof. Necessity. By D, we have p. Given k, let ¢ = 2" (p+ 1) — 1 and by D, we
choose r € N, M > 1 and C > 1 such that for all f € E(K), f # 0 we have

Uls o (MY

2
1 £llq 1 £1lq
Let s be such that 257! < r < 2%. Fix n large enough and consider the first 2% intervals of
Ky g =10,0,], Lo = [lne1 — by, lna] - oy Lnos = [lnes — Ly, ln—s]. Let ¢; be the midpoint

of I j,j=1,2,...,25 Set fu(z) = (g9(z))P™ where

S I(@—¢) ifzeKN[0,l, ]
9(w) = { 0 otherwise.

Then as in Theorem 1, we have |f|l, < 5C,([,\)P**P < [, for large enough n and
£l < .

Lower bound of || fnllq- We have || fllg > | fnlg > 1£9(¢5)| and

28 (p+1)2°

flw) =[x =yt =[] (=)

j=1 =1



where

bjtp+1)+1 = bjpr1)+2 = ... = bty p+1) = G, J=0,1,...,2° = 1.
Then
O (x) = > CA) [J(x—b)
Card(4)=(p+1)2°—¢ i€A

where A C {1,2,...,2%(p+1)}, C(A) > 1. Then each term in f9(byy1)2s) = f@(cos) is
nonnegative. So

TRCY

Since (p+1)2° —qg= (p+1)2° — (2" (p+1) — 1) = (p+ 1)(2° — 2¥"1) 4 1, we have

Z (CQS — bl)(CQs — bg) cee (CQS — b(p+1)2s,q) =: B.

B = (Cgs — Cl)p+1(025 — Cg)p+1 cee (Cgs — C23_2k+1)p+1 (CQS — C2s_2k+1+1).

Note that 25 — 2k+1 — 9s=1 4 9s=2 1+ ... 4 9k+1 gp(

ln—s
Cos — C1 > Cos — Cg > +++ > Cgs — Cos—1 = lp—s — ln—(s—l) > 5

. ln—(s—l)

Cos — Cos—141 > - > Cos — Cos—149s-2 = lnf(sfl) — ln7(572) > 9
ln—(k+2)

Cos — 62571+,,,+2k+2+1 > > Cos — 02571+,,,+2k+2+2k+1 > 2
ln—(k+1)

Cos — 02572k+1+1 = Cgs — Cgs—1+,_,+2k+2+2k+1+1 > 2

Thus

s— p+1 s 1
1Flle = B = Clacser (B5 220) 2 OS2
k—1

for large n and any constant K since [, = l;jﬁ;H and lim,,_. a,_p_1 — 00. Next we
choose K large enough so that the second inequality below holds:

Hqu Hqu lnfk lnfk lnfk lnfk lnfk
Thus I, > ¢~ M+ (-1 ) for all large n. By enlarging M + 1 if necessary, we have this

inequality for all n.
Sufficiency. Suppose that

Vr 3M, : 1, > o M (1), Vn.

Let us take p = 0. Given ¢, let ¢1 = 2q, r = 2¢+ 1 and M = (M, + 1)2q, where M, is
defined by the condition above. Fix t and n such that [, .. < 1/t <l,_,. Fix f € £(K).



We can now proceed in a way analogous to the proof of Theorem 1. For zy € K, k < ¢4
we have

| ®) (20))] Cil k1 flo + Coli X L[ f )l

Crp™ ()| flo + Cat" | 1]

VARVAN

Therefore,
[f B (o) 1% < CrpM VN8| flo + Cot™ 7| £
C
= G @Il + Il

.From here it is easy to obtain the desired bound

/ &
I£lla < CLe™ @1 flo + =271

where the constants C, ¢, depend on ¢, f. Thus the space £(K) has the property D.,.
O

III. The second model case: unbounded (NV,).

Next we consider a compact set K = K (I, N') where lim,, ., N,, = co. We write

Ky,=1,1Ul,oU---I,n Ul,n, 41U~ Ul NN\ 1 Ny

where the intervals above are pairwise disjoint. Let us denote the distance between I,, ;
and I, o by hy,.

Theorem 3. Assume K = K(I,N') where lim,, ., N,, = 00, l,, < h,, and for some @ > 1,
Dy, > lf;f_l for all n. Then £(K) has D,, if and only if the following condition is true:

M : L, > o MM, n. (2)
Proof. We will consider the condition

M : L, > o M(h M), Vn

n

which is clearly equivalent to (2).
Necessity. By D, we have p. Let ¢ = p+ 1 and find r, R, C such that for all f € £(K)

e /1l If1-\ "
Flp £l

C .
Y=, ( ||f||q)

Now given n, define
o ifz e KNJO,1L,]
In(2) { 0  otherwise



Then it can be easily shown as in the previous theorems that || f|l, < 4., | fll, >
L, [|fll» < 4h%". Thus the inequality above holds for M > max{R,r — ¢}.

Sufficiency. Let p = 0. Given g let r = g+ 2 and m = max{QM (¢ + 1), (QM +1)q}. We
will show that there are constants Cy and Cs such that for all f € £(K)

. ¢
1£lla < Crg™ ()1 flo + N f i ¥E > 0.

This is D, since M + 1 does not depend on ¢ (see e.g. [3].)
Let ng be such that for all n > ng we have 2r < N,,. Given t > to := max{2"r™ 1/, 1},
we find n such that [,, < 1/t <1,_1. We will apply Lemma 2 in [5]. Let o € K. Then
xo € I, j,- To simplify writing we may assume that 1 < jo < V,,.
Case 1. 1/t > a where a is the left end point of I,, 1.
() If jo < N, /2, we choose z,, as the left end point of I, j,1,. Then g <21 <--- <z,
and h=x1 —xg <x9—121 =+ =2, — 2,1 = H, and so by Lemma 2 in [5] we have for
kE<r

[f® (0)| < CLa7*(flo + CoH™ | f |1

Since h > h,, > lg_l > 1/t and H = h, + 1, < a < 1/t we have

&

C
[P @o)l < Cot¥| flo + —Z1f Nl < Cro®MH () flo + g WA

t

(¢7) If jo > N,/2, then we choose z, as the right end point of I, j,_,. Then zy > z; >
-+« > x,, but Lemma 2 in [5] can be applied and we may proceed as in (7).

Case 2. 1/t < a. Then I, < 1/t < a. In this case we choose all the points x1,zs, ..., 2z, in
I, j,. Since I, j, is the union of N, intervals I,,11; and xy € I,,41,, for some iy, we can
choose x,, € Iy 11iy4p, forall p=1,2,... ,ror x, € I414,—, for all p=1,2,...,r. Then

arguing as above, we see that
[f 9 (0)| < Calzy — w0 *[ flo + Calwr — 2oa [ £

Since |21 — 20| > hper > 19 > o M (b M) and from a = r(h, +1,) < 2rh, we get
h, > a/(2r) > 1/(2rt) we get |z, — x| ™% < @OMFQQMpMM) < HOMEGMEL) — Algo
|z, —x,—1| <1, <1/t. Thus for all £ <r and for all ¢t > ¢, we have

C
[F9 ()] < g @ flo + I

Next we estimate ' )(k)( )
RLf)™(y
AQZW7 r,yeE K, x#y, k<gq



Given z,y € K, x #y and t > 1y, if |x — y| > 1/t, then

O S O@) 1
< I
4o = u—ka+Z;u—k!u—|Wi

sc@wmmmmﬂkﬁwww“

Zﬂﬂm o

—%ZCWWWWN

i=k

< canMﬁﬂaM*wumml+e>+ A(1+e).
If |z —y| < 1/t , then from
_ q+1
R4 — Ratl (g+1) (y — )
1f(y) =R f(y) + 1977 (x) TESN
it follows that
L e el
q = Hf”qul‘x y‘ T ( ) ‘ y‘
< |Ifll+= +C pIM(at) (tM“)|f|o— q+1 HfH

Thus we have constants C; and Cs such that for all f € £ (K)

S C
1£llg < Cro™ (DI fllo + fllfllr

and the space £(K) has the property D,,.
OJ

Now we can construct families having the cardinality of the continuum of pairwise noni-
somorphic spaces £(K) for any model type.
Example 1. Let [y = e ', N, = 2, a, = expn® with A > 1 and K, denote the
corresponding Cantor-type set. Then by Theorem 2 the space £(K)) has the property
D, if and only if

Vi AM : oM (e¥10n) > eMtnth Yy, (3)

Let us show that if A # p then the spaces £(K,) and £(K,) are not isomorphic. Given
A < g let us take p with A/(A+1) < p < pu/(p+1) and o(t) = 7 with (¢) = expIn”Int.
Let us show that the space £(K) has the property D, whereas £(K,) does not have it.
Substituting the function ¢ in (3) gives the condition

Vk IM @ M~(e™%) > apyt - .. Quak, Y0



or
InM+ (Ina; + -+ Ina,)” >Ina, g + -+ Ina,, Vn.

Since A+1 ( ))\—4-1
n n+1
<1 2>‘ >‘<—
pl e A1

and
knt < (n+ 1D -+ (n+ k) < k2 if n >k,

we see that for the space £(K) the condition above is valid. Suppose that it is valid also
for £(K,). Then for k =1 we have M; such that

1 (u+1)p
1nM1+(n+ ) >nt n— oo,
p+1

which is a contradiction as p(p + 1) < p. Therefore £(K) 2 E(K,).

Example 2. Let l;, «, be the same as before but now let h, = [>_,. Then N, >
ln—1/(l,+hy) — 00 as n — oo and we have the compact set K\ = K((I,,), (IV,,)) satisfying
the conditions of Theorem 3. For () = t7®) we get the following characterization: £(K)
has the property D,, if and only if

IM : MPy(eMer-on) > a4, Yn.

Let us fix A, p1, p and () as before. We see that the space€(K) has the property D,
whereas £(K,) does not have.

We guess that the invariant D,, is complete for the spaces E(K) of the first type. On the
other hand, for the spaces £(K) of the second type (N,, — o0) it is possible as in [1] to
find nonisomorphic spaces which are not distinguishable by the invariant D, but can be
distinguished by invariants based on the methods of Zahariuta [14], [16], [17], [5].
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