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Abstract. The properties Ω2 of Zahariuta (or DN of Vogt) and Dϕ for the space E(K)
of Whitney functions on Cantor type sets are considered. We give a criterion for E(K) to
have these properties for two cases. As application, it is shown that there is a continuum
of such spaces which are pairwise non-isomorphic.

I. Introduction.
Let K ⊂ R be a perfect compact set. By E(K) we denote the space of infinitely differen-
tiable Whitney functions on K. This is the space of functions f : K → R extendable to
C∞-functions on R equipped with the topology defined by the sequence of norms

‖f‖q = |f |q + sup

{
|(Rq

yf)(i)(x)|
|x− y|q−i

: x, y ∈ K, x 6= y, i ≤ q

}
, q = 0, 1, . . .

where |f |q = sup{|f (j)(x)| : x ∈ K, j ≤ q} and

Rq
yf(x) = f(x)− T q

y f(x) = f(x)−
q∑

k=0

f (k)(y)

k!
(x− y)k

is the Taylor remainder. With

Uq = {f ∈ E(K) : ‖f‖q ≤ 1}
the sequence (Uq) needs not to decrease, but the sets εUq with ε > 0 and q ∈ N constitute
a basis of neighborhoods of zero in E(K). It was shown in [8] by Tidten and in [12] by
Vogt that the space E(K) is isomorphic to the space

s =

{
x = (ξn) : ‖x‖q =

∞∑
n=1

|ξn|nq < ∞, ∀q
}



of rapidly decreasing sequences if and only if there is a linear continuous extension operator
L : E(K) → C∞(R). By Er(K) we denote the Banach space of r times differentiable
Whitney jets on K equipped with the norm ‖ · ‖r.
We denote N = {1, 2, . . .} and Z+ = {0, 1, 2, . . .}. We will consider Cantor type compact
sets which are described as follows: let l = (ln)∞n=0 be a sequence of positive numbers
and N = (Nn)∞n=1 be a sequence of integers Nn ≥ 2 such that l0 = 1 and Nnln < ln−1

as well as 4ln ≤ ln−1. Let K = K(l,N ) be the Cantor type set K = ∩∞n=0Kn where
K0 = [0, 1] = [0, l0] and K1 is obtained from K0 by deleting N1 − 1 equal open intervals
of total length l0 −N1l1 uniformly. Thus K1 is the union of N1 closed intervals I1,k each
of length l1 which are distributed uniformly. In turn Kn is a union of N1N2 . . . Nn closed
intervals In,k of length ln and Kn+1 is obtained from Kn by deleting uniformly Nn+1 − 1
equal open intervals of total length ln−ln+1Nn+1 from each In,k, k = 1, 2, . . . , N1N2 . . . Nn.
This way for the classical Cantor set we have ln = 3−n and Nn = 2. We will consider two
cases: (i) Nn = 2 for all n, (ii) limn→∞ Nn = ∞.
The following lemma is in [4] (see also [5]).
Lemma 1. Let g(x) =

∏N
j=1(x − aj), where |x − aj| ≤ l < 1, j = 1, . . . , N . Let

f(x) = g(x)q. Then for n ≤ N · q

|f (n)(x)| ≤ C(N, q, n) lN ·q−n,

If in addition n < q, then

|f (n)(x)| ≤ C(N, q, n) · |g(x)|q−n,

where

C(N, q, n) =
(N · q)!

(N · q − n)!
.

The following lemma is a variation of Lemma 2 in [5] with a very similar proof. Hence
the proof is omitted.
Lemma 2. Let K ⊂ R be a compact set containing r + 1 distinct points x0, x1, . . . , xr

such that for some finite sequence 0 < ψ1 ≤ ψ2 ≤ · · · ≤ ψr,

ψi

M
≤ |xi − xk| ≤ ψi for k = 0, 1, . . . , i− 1, i = 1, 2, . . . , r.

Then for all k ≤ r and f ∈ Er(K)

|f (k)(x0)| ≤ Cψ−k
1 |f |0 + Cψr−k

r ‖f‖r

where the constant C = 2kM rr!/(r − k)!.
Now we consider a linear topological invariant introduced by Vogt [13] and Tidten [9]
(and called DNϕ by them) and by Goncharov and Zahariuta [2], [19] and [6].



Let ϕ : R+ → R+ be an increasing function, ϕ(t) ≥ t. A Fréchet space X with a
fundamental increasing system of seminorms (‖ · ‖p)

∞
p=0 has the property Dϕ if ∃p ∈

Z+ ∀q ∈ N ∃r ∈ N,m > 0, C > 0 such that

‖f‖q ≤ ϕm(t)‖f‖p +
C

t
‖f‖r, t > 0, f ∈ X. (1)

We will use as well the multiplicative version of this property (see e.g. [6]):

∃p ∀q ∃r,m, C :
‖f‖p

‖f‖q

ϕm

(
C
‖f‖r

‖f‖q

)
≥ 1, ∀f 6= 0.

Examples of continua of pairwise non-isomorphic spaces of C∞ ([9], [6]) and Whitney ([7],
[5]) functions were found by means of these invariants.
The invariant Dϕ appeared as a generalization of the class D1 (see [15]) or the property
DN ([10]). In the case ϕ(t) = t the invariant Dϕ coincides with Ω2 ([18]) or DN ([11]).
The strong form of the condition (1) with m = 1 coincides with the property DNϕ ([13],
[9]).
We define αn = ln ln+1

ln ln
. Thus αn > 1 and ln+1 = lαn

n . In [4] the case αn = α 6= 2
was considered. Applying Vogt-Tidten’s [8] characterization of the extension property in
terms of the invariant DN , it was proved in [4] that for the space E(K) there exists a
linear continuous extension operator L : E(K) → C∞(R) if and only if α < 2.
II. The first model case: bounded (Nn).
First let us consider the case in which the sequence (Nn) is bounded. Without loss of
generality we assume that Nn = 2 since for arbitrary bounded sequence (Nn) we can repeat
the proof with minor modifications. For the weak property DN we have the following
geometric characterization.
Theorem 1. Let Nn = 2 for all n. The space E(K) has property Ω2 (or DN) if and only
if lim sup αn < ∞.
Proof. Necessity. The proof of this part is similar to the proof of Theorem 2 in [4] We
assume that lim sup αn = ∞ and show that

∀p ∃q ∀r, R ∃(fk) ⊂ E(K) : lim
k→∞

‖fk‖p

‖fk‖q

(‖fk‖r

‖fk‖q

)R

= 0.

Fix p, let q = p + 1. Fix r, R such that q < r. Find s such that 2s−1 < r
q
≤ 2s. Since

lim sup αn = ∞, there is a subsequence (nk) of integers such that αnk
↗ ∞. Fix k large

enough and let n = nk + 1. Consider the first 2s intervals of Kn; In,1 = [0, ln], In,2 =
[ln−1 − ln, ln−1], . . . , In,2s = [ln−s − ln, ln−s]. Let cj be the midpoint of In,j, j = 1, 2, . . . , 2s.
Set fk(x) = (g(x))q where

g(x) =

{ ∏2s

j=1(x− cj) if x ∈ K ∩ [0, ln−s]

0 otherwise.



Upper bound of ‖fk‖p. Fix i ≤ p. As in [4], |f i
k(x)| ≤ Cp(ln λ)q−i and |fk|p ≤ Cp(lnλ)q−p =

Cplnλ where λ = ln−1l
2
n−2 · · · l2s−1

n−s . With

Ap :=
|(Rp

xfk)
(i)(y)|

|x− y|p−i
, i ≤ p, x 6= y, x, y ∈ K

we have Ap ≤ 2Cplnλ if |x− y| < ln−1 − 2ln. If |x− y| ≥ ln−1 − 2ln, then

Ap ≤ |f (i)
k (y)|

|x− y|p−i
+

p∑
t=i

|f (t)
k (x)|

(t− i)!

1

|x− y|p−t

≤ Cp(ln λ)q−p

{(
ln λ

|x− y|
)p−i

+

p∑
t=i

1

(t− i)!

(
ln λ

|x− y|
)p−t

}
.

Since αn−1 = αnk
is large and therefore 3ln ≤ ln−1 we have that ln(λ + 2) < 3ln ≤ ln−1,

so ln λ < ln−1 − 2ln ≤ |x− y| which implies ln λ/|x− y| < 1. Thus the expression in { }
above is less than 1+e. Thus Ap ≤ Cp(1+e)(ln λ)q−p and ‖fk‖p ≤ 5Cp(ln λ)q−p = 5Cplnλ.
Since 3ln ≤ ln−1, we have ln < ln−1/2, and so by [4] Theorem 2, ‖fk‖q ≥ q! 2−2r λq and
‖fk‖r ≤ Cr.
Thus for some constant M we have

‖fk‖p

‖fk‖q

(‖fk‖r

‖fk‖q

)R

≤ M
lnλ

λq

1

λqR
= M

ln
λC

=: Q

where C = p+(p+1)R. We have ln = l
αn−1

n−1 = . . . = l
αn−s···αn−2αn−1

n−s and so λ = lκn−s where

κ = αn−2αn−3 · · ·αn−s + 2αn−3 · · ·αn−s + · · ·+ 2s−2αn−s + 2s−1.

So we get Q = M l
αn−1αn−2···αn−s−Cκ
n−s . Observe that κ is a sum of s terms and each of them

is less than 2s−1αn−2 · · ·αn−s. Then

αn−1αn−2 . . . αn−s − Cκ = αn−2 . . . αn−s(αn−1 − Cs2s−1) →∞
as s is fixed. Thus the exponent of ln−s tends to ∞ and so Q → 0 as n →∞.
Sufficiency. If lim sup αn < ∞, then for some α < ∞ we have αn ≤ α for all n.
Let p = 0. Given q, let q1 = 2q, r = 4q and R = αr + 1. Fix t > 1 and find n such that
ln−r+1 ≤ 1/t < ln−r. Fix x0 ∈ K and find intervals Im,j ⊂ Km such that

x0 ∈ In,j0 ⊂ In−1,j1 ⊂ . . . ⊂ In−(r−1),j−(r−1).

Let x1 be the end point of In,j0 which is farther from x0. Then clearly ln/2 ≤ |x1−x0| ≤ ln.
Let x2 be the end point of In−1,j1 which is farther from x0. Then

ln−1

2
≤ |x2 − x0| ≤ ln−1 and

ln−1

2
≤ |x2 − x1| ≤ ln−1



since x1 and x2 belong to different intervals In,j and In,j′ in In−1,j1 . We continue in this
way and choose the points x1, x2, . . . , xr. Then

ln−i+1

2
≤ |xi − xk| ≤ ln−i+1, k = 0, 1, . . . , i− 1; i = 1, 2, . . . , r.

So we can apply Lemma 2 with ψi = ln−i+1 and for all k ≤ q1 obtain

|f (k)(x0)| ≤ Cl−k
n |f |0 + Clr−k

n−r+1‖f‖r.

Since ln = l
αn−1

n−1 = . . . = l
αn−1...αn−r

n−r ≥ lα
r

n−r ≥ t−αr
, for all k ≤ q1 we have

|f (k)(x0)|tq1−k ≤ C1t
αrk+q1−k|f |0 +

C2

tr−q1
‖f‖r

≤ C1t
Rq|f |0 +

C2

tq
‖f‖r =: S(t).

Then as in the last paragraph of the proof of Theorem 3 in [4] we have ‖f‖q ≤ C0S(t),
which proves the theorem.

¤
In the next theorem we give a necessary and sufficient condition for the space E(K) to
have the property Dϕ

Theorem 2. Assume Nn = 2 for all n and limn→∞ αn = ∞. Then E(K) has property
Dϕ if and only if the following condition is true:

∀k ∃M : ln ≥ ϕ−M(l−1
n−k) ∀n.

Proof. Necessity. By Dϕ we have p. Given k, let q = 2k+1(p + 1) − 1 and by Dϕ we
choose r ∈ N, M ≥ 1 and C ≥ 1 such that for all f ∈ E(K), f 6= 0 we have

‖f‖p

‖f‖q

ϕM

(
C
‖f‖r

‖f‖q

)
≥ 1.

Let s be such that 2s−1 < r ≤ 2s. Fix n large enough and consider the first 2s intervals of
Kn; In,1 = [0, ln], In,2 = [ln−1− ln, ln−1], . . . , In,2s = [ln−s− ln, ln−s]. Let cj be the midpoint
of In,j, j = 1, 2, . . . , 2s. Set fn(x) = (g(x))p+1 where

g(x) =

{ ∏2s

j=1(x− cj) if x ∈ K ∩ [0, ln−s]

0 otherwise.

Then as in Theorem 1, we have ‖f‖p ≤ 5Cp(lnλ)p+1−p ≤ ln for large enough n and
‖f‖r ≤ Cr.

Lower bound of ‖fn‖q. We have ‖fn‖q ≥ |fn|q ≥ |f (q)
n (c2s)| and

fn(x) =
2s∏

j=1

(x− cj)
p+1 =

(p+1)2s∏
i=1

(x− bi)



where
bj(p+1)+1 = bj(p+1)+2 = . . . = b(j+1)(p+1) = cj+1, j = 0, 1, . . . , 2s − 1.

Then
f (q)(x) =

∑

Card(A)=(p+1)2s−q

C(A)
∏
i∈A

(x− bi)

where A ⊂ {1, 2, . . . , 2s(p + 1)}, C(A) ≥ 1. Then each term in f (q)(b(p+1)2s) = f (q)(c2s) is
nonnegative. So

|f (q)(c2s)| ≥ (c2s − b1)(c2s − b2) · · · (c2s − b(p+1)2s−q) =: B.

Since (p + 1)2s − q = (p + 1)2s − (2k+1(p + 1)− 1) = (p + 1)(2s − 2k+1) + 1, we have

B = (c2s − c1)
p+1(c2s − c2)

p+1 · · · (c2s − c2s−2k+1)p+1(c2s − c2s−2k+1+1).

Note that 2s − 2k+1 = 2s−1 + 2s−2 + · · ·+ 2k+1 and

c2s − c1 > c2s − c2 > · · · > c2s − c2s−1 = ln−s − ln−(s−1) >
ln−s

2

c2s − c2s−1+1 > · · · > c2s − c2s−1+2s−2 = ln−(s−1) − ln−(s−2) >
ln−(s−1)

2
. . .

c2s − c2s−1+···+2k+2+1 > · · · > c2s − c2s−1+···+2k+2+2k+1 >
ln−(k+2)

2

c2s − c2s−2k+1+1 = c2s − c2s−1+···+2k+2+2k+1+1 >
ln−(k+1)

2
.

Thus

‖f‖q ≥ B ≥ Cln−k−1

(
l2

k+1

n−k−2 . . . l2
s−1

n−s

)p+1

≥ Cl
2s(p+1)
n−k−1 ≥

1

K
ln−k

for large n and any constant K since ln−k = l
αn−k−1

n−k−1 and limn→∞ αn−k−1 → ∞. Next we
choose K large enough so that the second inequality below holds:

1 ≤ ϕM

(
C
‖f‖r

‖f‖q

) ‖f‖p

‖f‖q

≤ ϕM

(
1

ln−k

)
· lnλ

ln−k

≤ ϕM

(
1

ln−k

)
· ln
ln−k

≤ ϕM+1

(
1

ln−k

)
ln.

Thus ln ≥ ϕ−(M+1)(l−1
n−k) for all large n. By enlarging M + 1 if necessary, we have this

inequality for all n.
Sufficiency. Suppose that

∀r ∃Mr : ln ≥ ϕ−Mr(l−1
n−r), ∀n.

Let us take p = 0. Given q, let q1 = 2q, r = 2q + 1 and M = (Mr + 1)2q, where Mr is
defined by the condition above. Fix t and n such that ln−r+1 ≤ 1/t < ln−r. Fix f ∈ E(K).



We can now proceed in a way analogous to the proof of Theorem 1. For x0 ∈ K, k ≤ q1

we have

|f (k)(x0)| ≤ C1l
−k
n |f |0 + C2l

r−k
n−r+1‖f‖r

≤ C1ϕ
Mrk(t)|f |0 + C2t

k−r‖f‖r.

Therefore,

|f (k)(x0)| tq1−k ≤ C1ϕ
(Mr+1)q1(t)|f |0 + C2t

q1−r‖f‖r

= C1ϕ
M(t)|f |0 +

C2

t
‖f‖r.

¿From here it is easy to obtain the desired bound

‖f‖q ≤ C ′
1ϕ

M(t)|f |0 +
C ′

2

t
‖f‖r

where the constants C ′
1, c′2 depend on t, f . Thus the space E(K) has the property Dϕ.

¤
III. The second model case: unbounded (Nn).
Next we consider a compact set K = K(l,N ) where limn→∞ Nn = ∞. We write

Kn = In,1 ∪ In,2 ∪ · · · In,Nn ∪ In,Nn+1 ∪ · · · ∪ In,NnNn−1...N1

where the intervals above are pairwise disjoint. Let us denote the distance between In,1

and In,2 by hn.
Theorem 3. Assume K = K(l,N ) where limn→∞ Nn = ∞, ln < hn and for some Q ≥ 1,
hn ≥ lQn−1 for all n. Then E(K) has Dϕ if and only if the following condition is true:

∃M : ln ≥ ϕ−M(l−M
n−1), ∀n. (2)

Proof. We will consider the condition

∃M : ln ≥ ϕ−M(h−M
n ), ∀n

which is clearly equivalent to (2).
Necessity. By Dϕ we have p. Let q = p + 1 and find r,R, C such that for all f ∈ E(K)
we have

1 ≤ ‖f‖p

‖f‖q

(
C
‖f‖r

‖f‖q

)R

.

Now given n, define

fn(x) =

{
xq

q!
if x ∈ K ∩ [0, ln]

0 otherwise



Then it can be easily shown as in the previous theorems that ‖f‖p ≤ 4ln, ‖f‖q ≥
1, ‖f‖r ≤ 4hq−r

n . Thus the inequality above holds for M > max{R, r − q}.
Sufficiency. Let p = 0. Given q let r = q + 2 and m = max{QM(q + 1), (QM + 1)q}. We
will show that there are constants C̃1 and C̃2 such that for all f ∈ E(K)

‖f‖q ≤ C̃1ϕ
m(tM+1)|f |0 +

C̃2

t
‖f‖r, ∀t > 0.

This is Dϕ since M + 1 does not depend on q (see e.g. [3].)
Let n0 be such that for all n ≥ n0 we have 2r < Nn. Given t ≥ t0 := max{2MrM , 1/ln0−1},
we find n such that ln < 1/t ≤ ln−1. We will apply Lemma 2 in [5]. Let x0 ∈ K. Then
x0 ∈ In,j0 . To simplify writing we may assume that 1 ≤ j0 ≤ Nn.
Case 1. 1/t ≥ a where a is the left end point of In,r+1.
(i) If j0 ≤ Nn/2, we choose xµ as the left end point of In,j0+µ. Then x0 < x1 < · · · < xr

and h = x1 − x0 ≤ x2 − x1 = · · · = xr − xr−1 = H, and so by Lemma 2 in [5] we have for
k ≤ r

|f (k)(x0)| ≤ C1h
−k|f |0 + C2H

r−k‖f‖r.

Since h ≥ hn ≥ lQn−1 ≥ 1/tQ and H = hn + ln ≤ a ≤ 1/t we have

|f (k)(x0)| ≤ C1t
Qk|f |0 +

C2

tr−k
‖f‖r ≤ C1ϕ

QMk(tM+1)|f |0 +
C2

tr−k
‖f‖r.

(ii) If j0 > Nn/2, then we choose xµ as the right end point of In,j0−µ. Then x0 > x1 >
· · · > xr, but Lemma 2 in [5] can be applied and we may proceed as in (i).
Case 2. 1/t < a. Then ln < 1/t < a. In this case we choose all the points x1, x2, . . . , xr in
In,j0 . Since In,j0 is the union of Nn+1 intervals In+1,i and x0 ∈ In+1,i0 for some i0, we can
choose xµ ∈ In+1,i0+µ for all µ = 1, 2, . . . , r or xµ ∈ In+1,i0−µ for all µ = 1, 2, . . . , r. Then
arguing as above, we see that

|f (k)(x0)| ≤ C1|x1 − x0|−k|f |0 + C2|xr − xr−1|r−k‖f‖r.

Since |x1 − x0| ≥ hn+1 ≥ lQn ≥ ϕ−QM(h−M
n ) and from a = r(hn + ln) ≤ 2rhn we get

hn ≥ a/(2r) > 1/(2rt) we get |x1 − x0|−k ≤ ϕQMk(2MrM tM) ≤ ϕQMk(tM+1). Also
|xr − xr−1| ≤ ln ≤ 1/t. Thus for all k ≤ r and for all t ≥ t0 we have

|f (k)(x0)| ≤ C1ϕ
QMk(tM+1)|f |0 +

C2

tr−k
‖f‖r.

Next we estimate

Aq =
|(Rq

xf)(k)(y)|
|x− y|q−k

, x, y ∈ K, x 6= y, k ≤ q.



Given x, y ∈ K, x 6= y and t ≥ t0, if |x− y| ≥ 1/t, then

Aq ≤ |f (k)(y)|
|x− y|q−k

+

q∑

i=k

|f (i)(x)|
(i− k)!

1

|x− y|q−i

≤ C1ϕ
QMk(tM+1)|f |0tq−k +

C2

tr−k
‖f‖rt

q−k

+

q∑

i=k

C1ϕ
QMi(tM+1)|f |0 tq−i

(i− k)!
+

q∑

i=k

C2

tr−i
‖f‖r

tq−i

(i− k)!

≤ C1ϕ
QMq+q(tM+1)|f |0(1 + e) +

C2

tr−q
‖f‖r(1 + e).

If |x− y| < 1/t , then from

Rq
xf(y) = Rq+1

x f(y) + f (q+1)(x)
(y − x)q+1

(q + 1)!

it follows that

Aq ≤ ‖f‖q+1|x− y|+ |f (q+1)(x)|
(q + 1− k)!

|x− y|

≤ ‖f‖r
1

t
+ C1ϕ

QM(q+1)(tM+1)|f |0 1

t
+

C2

tr−(q+1)
‖f‖r

1

t

Thus we have constants C̃1 and C̃2 such that for all f ∈ E(K)

‖f‖q ≤ C̃1ϕ
m(tM+1)‖f‖0 +

C̃2

t
‖f‖r

and the space E(K) has the property Dϕ.
¤

Now we can construct families having the cardinality of the continuum of pairwise noni-
somorphic spaces E(K) for any model type.
Example 1. Let l1 = e−1, Nn = 2, αn = exp nλ with λ > 1 and Kλ denote the
corresponding Cantor-type set. Then by Theorem 2 the space E(Kλ) has the property
Dϕ if and only if

∀k ∃M : ϕM(eα1...αn) ≥ eα1...αn+k , ∀n. (3)

Let us show that if λ 6= µ then the spaces E(Kλ) and E(Kµ) are not isomorphic. Given
λ < µ let us take ρ with λ/(λ+1) < ρ < µ/(µ+1) and ϕ(t) = tγ(t) with γ(t) = exp lnρ ln t.
Let us show that the space E(Kλ) has the property Dϕ whereas E(Kµ) does not have it.
Substituting the function ϕ in (3) gives the condition

∀k ∃M : Mγ(eα1...αn) ≥ αn+1 . . . αn+k, ∀n



or
ln M + (ln α1 + · · ·+ ln αn)ρ ≥ ln αn+1 + · · ·+ ln αn+k, ∀n.

Since
nλ+1

λ + 1
< 1 + 2λ + · · ·+ nλ <

(n + 1)λ+1

λ + 1

and
knλ < (n + 1)λ + · · ·+ (n + k)λ < k2λnλ if n > k,

we see that for the space E(Kλ) the condition above is valid. Suppose that it is valid also
for E(Kµ). Then for k = 1 we have M1 such that

ln M1 +

(
n + 1

µ + 1

)(µ+1)ρ

≥ nµ, n →∞,

which is a contradiction as ρ(µ + 1) < µ. Therefore E(Kλ) 6∼= E(Kµ).
Example 2. Let l1, αn be the same as before but now let hn = l2n−1. Then Nn >
ln−1/(ln+hn) →∞ as n →∞ and we have the compact set Kλ = K((ln), (Nn)) satisfying
the conditions of Theorem 3. For ϕ(t) = tγ(t) we get the following characterization: E(K)
has the property Dϕ if and only if

∃M : M2γ(eMα1...αn) ≥ αn+1, ∀n.

Let us fix λ, µ, ρ and γ(t) as before. We see that the spaceE(Kλ) has the property Dϕ

whereas E(Kµ) does not have.
We guess that the invariant Dϕ is complete for the spaces E(K) of the first type. On the
other hand, for the spaces E(K) of the second type (Nn → ∞) it is possible as in [1] to
find nonisomorphic spaces which are not distinguishable by the invariant Dϕ, but can be
distinguished by invariants based on the methods of Zahariuta [14], [16], [17], [5].
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[10] D. Vogt, Characterisierung der Unterräume von (s), Math. Z., 155 (1977), 109−117.

[11] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihen-
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