A CONTINUUM OF PAIRWISE NONISOMORPHIC SPACES OF WHITNEY FUNCTIONS ON CANTOR-TYPE SETS

Alexander P. Goncharov, Mefharet Kocatepe

Department of Mathematics, Faculty of Science Bilkent University, 06533 Bilkent, Ankara, Turkey goncha@fen.bilkent.edu.tr kocatepe@fen.bilkent.edu.tr

Abstract. The properties Ω_2 of Zahariuta (or <u>DN</u> of Vogt) and D_{φ} for the space $\mathcal{E}(K)$ of Whitney functions on Cantor type sets are considered. We give a criterion for $\mathcal{E}(K)$ to have these properties for two cases. As application, it is shown that there is a continuum of such spaces which are pairwise non-isomorphic.

I. Introduction.

Let $K \subset \mathbb{R}$ be a perfect compact set. By $\mathcal{E}(K)$ we denote the space of infinitely differentiable Whitney functions on K. This is the space of functions $f: K \to \mathbb{R}$ extendable to C^{∞} -functions on \mathbb{R} equipped with the topology defined by the sequence of norms

$$||f||_q = |f|_q + \sup\left\{\frac{|(R_y^q f)^{(i)}(x)|}{|x - y|^{q - i}} : x, y \in K, \ x \neq y, \ i \le q\right\}, \ q = 0, 1, \dots$$

where $|f|_q = \sup\{|f^{(j)}(x)| : x \in K, j \le q\}$ and

$$R_y^q f(x) = f(x) - T_y^q f(x) = f(x) - \sum_{k=0}^q \frac{f^{(k)}(y)}{k!} (x - y)^k$$

is the Taylor remainder. With

$$U_q = \{ f \in \mathcal{E}(K) : \|f\|_q \le 1 \}$$

the sequence (U_q) needs not to decrease, but the sets εU_q with $\varepsilon > 0$ and $q \in \mathbb{N}$ constitute a basis of neighborhoods of zero in $\mathcal{E}(K)$. It was shown in [8] by Tidten and in [12] by Vogt that the space $\mathcal{E}(K)$ is isomorphic to the space

$$s = \left\{ x = (\xi_n) : \|x\|_q = \sum_{n=1}^{\infty} |\xi_n| n^q < \infty, \ \forall q \right\}$$

of rapidly decreasing sequences if and only if there is a linear continuous extension operator $L : \mathcal{E}(K) \to C^{\infty}(\mathbb{R})$. By $\mathcal{E}^{r}(K)$ we denote the Banach space of r times differentiable Whitney jets on K equipped with the norm $\|\cdot\|_{r}$.

We denote $\mathbb{N} = \{1, 2, ...\}$ and $\mathbb{Z}^+ = \{0, 1, 2, ...\}$. We will consider Cantor type compact sets which are described as follows: let $l = (l_n)_{n=0}^{\infty}$ be a sequence of positive numbers and $\mathcal{N} = (N_n)_{n=1}^{\infty}$ be a sequence of integers $N_n \ge 2$ such that $l_0 = 1$ and $N_n l_n < l_{n-1}$ as well as $4l_n \le l_{n-1}$. Let $K = K(l, \mathcal{N})$ be the Cantor type set $K = \bigcap_{n=0}^{\infty} K_n$ where $K_0 = [0, 1] = [0, l_0]$ and K_1 is obtained from K_0 by deleting $N_1 - 1$ equal open intervals of total length $l_0 - N_1 l_1$ uniformly. Thus K_1 is the union of N_1 closed intervals $I_{1,k}$ each of length l_1 which are distributed uniformly. In turn K_n is a union of $N_1 N_2 \dots N_n$ closed intervals $I_{n,k}$ of length l_n and K_{n+1} is obtained from K_n by deleting uniformly $N_{n+1} - 1$ equal open intervals of total length $l_n - l_{n+1}N_{n+1}$ from each $I_{n,k}$, $k = 1, 2, \dots, N_1 N_2 \dots N_n$. This way for the classical Cantor set we have $l_n = 3^{-n}$ and $N_n = 2$. We will consider two cases: (i) $N_n = 2$ for all n, (ii) $\lim_{n\to\infty} N_n = \infty$.

The following lemma is in [4] (see also [5]).

Lemma 1. Let $g(x) = \prod_{j=1}^{N} (x - a_j)$, where $|x - a_j| \le l < 1, j = 1, ..., N$. Let $f(x) = g(x)^q$. Then for $n \le N \cdot q$

$$|f^{(n)}(x)| \le C(N,q,n) \ l^{N \cdot q - n},$$

If in addition n < q, then

$$|f^{(n)}(x)| \le C(N, q, n) \cdot |g(x)|^{q-n},$$

where

$$C(N,q,n) = \frac{(N \cdot q)!}{(N \cdot q - n)!}.$$

The following lemma is a variation of Lemma 2 in [5] with a very similar proof. Hence the proof is omitted.

Lemma 2. Let $K \subset \mathbb{R}$ be a compact set containing r + 1 distinct points x_0, x_1, \ldots, x_r such that for some finite sequence $0 < \psi_1 \leq \psi_2 \leq \cdots \leq \psi_r$,

$$\frac{\psi_i}{M} \le |x_i - x_k| \le \psi_i \text{ for } k = 0, 1, \dots, i - 1, \ i = 1, 2, \dots, r.$$

Then for all $k \leq r$ and $f \in \mathcal{E}^r(K)$

$$|f^{(k)}(x_0)| \le C\psi_1^{-k} |f|_0 + C\psi_r^{r-k} ||f||_r$$

where the constant $C = 2kM^r r!/(r-k)!$.

Now we consider a linear topological invariant introduced by Vogt [13] and Tidten [9] (and called DN_{φ} by them) and by Goncharov and Zahariuta [2], [19] and [6].

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be an increasing function, $\varphi(t) \geq t$. A Fréchet space X with a fundamental increasing system of seminorms $(\|\cdot\|_p)_{p=0}^{\infty}$ has the property D_{φ} if $\exists p \in \mathbb{Z}_+ \ \forall q \in \mathbb{N} \ \exists r \in \mathbb{N}, m > 0, C > 0$ such that

$$||f||_q \le \varphi^m(t) ||f||_p + \frac{C}{t} ||f||_r, \ t > 0, \ f \in X.$$
(1)

We will use as well the multiplicative version of this property (see e.g. [6]):

$$\exists p \; \forall q \; \exists r, m, C: \; \frac{\|f\|_p}{\|f\|_q} \varphi^m \left(C \frac{\|f\|_r}{\|f\|_q} \right) \ge 1, \; \forall f \neq 0.$$

Examples of continua of pairwise non-isomorphic spaces of C^{∞} ([9], [6]) and Whitney ([7], [5]) functions were found by means of these invariants.

The invariant D_{φ} appeared as a generalization of the class D_1 (see [15]) or the property DN ([10]). In the case $\varphi(t) = t$ the invariant D_{φ} coincides with Ω_2 ([18]) or \underline{DN} ([11]). The strong form of the condition (1) with m = 1 coincides with the property DN_{φ} ([13], [9]).

We define $\alpha_n = \frac{\ln l_{n+1}}{\ln l_n}$. Thus $\alpha_n > 1$ and $l_{n+1} = l_n^{\alpha_n}$. In [4] the case $\alpha_n = \alpha \neq 2$ was considered. Applying Vogt-Tidten's [8] characterization of the extension property in terms of the invariant DN, it was proved in [4] that for the space $\mathcal{E}(K)$ there exists a linear continuous extension operator $L : \mathcal{E}(K) \to C^{\infty}(\mathbb{R})$ if and only if $\alpha < 2$. **II. The first model case: bounded** (N_n) .

First let us consider the case in which the sequence (N_n) is bounded. Without loss of

generality we assume that $N_n = 2$ since for arbitrary bounded sequence (N_n) is bounded. Without loss of the proof with minor modifications. For the weak property <u>DN</u> we have the following geometric characterization.

Theorem 1. Let $N_n = 2$ for all n. The space $\mathcal{E}(K)$ has property Ω_2 (or <u>DN</u>) if and only if $\limsup \alpha_n < \infty$.

Proof. Necessity. The proof of this part is similar to the proof of Theorem 2 in [4] We assume that $\limsup \alpha_n = \infty$ and show that

$$\forall p \; \exists q \; \forall r, R \; \exists (f_k) \subset \mathcal{E}(K) : \quad \lim_{k \to \infty} \frac{\|f_k\|_p}{\|f_k\|_q} \left(\frac{\|f_k\|_r}{\|f_k\|_q}\right)^R = 0.$$

Fix p, let q = p + 1. Fix r, R such that q < r. Find s such that $2^{s-1} < \frac{r}{q} \le 2^s$. Since lim sup $\alpha_n = \infty$, there is a subsequence (n_k) of integers such that $\alpha_{n_k} \nearrow \infty$. Fix k large enough and let $n = n_k + 1$. Consider the first 2^s intervals of K_n ; $I_{n,1} = [0, l_n], I_{n,2} = [l_{n-1} - l_n, l_{n-1}], \ldots, I_{n,2^s} = [l_{n-s} - l_n, l_{n-s}]$. Let c_j be the midpoint of $I_{n,j}, j = 1, 2, \ldots, 2^s$. Set $f_k(x) = (g(x))^q$ where

$$g(x) = \begin{cases} \prod_{j=1}^{2^s} (x - c_j) & \text{if } x \in K \cap [0, l_{n-s}] \\ 0 & \text{otherwise.} \end{cases}$$

Upper bound of $||f_k||_p$. Fix $i \leq p$. As in [4], $|f_k^i(x)| \leq C_p(l_n \lambda)^{q-i}$ and $|f_k|_p \leq C_p(l_n \lambda)^{q-p} = C_p l_n \lambda$ where $\lambda = l_{n-1} l_{n-2}^2 \cdots l_{n-s}^{2^{s-1}}$. With

$$A_p := \frac{|(R_x^p f_k)^{(i)}(y)|}{|x - y|^{p - i}}, \ i \le p, \ x \ne y, \ x, y \in K$$

we have $A_p \le 2C_p l_n \lambda$ if $|x - y| < l_{n-1} - 2l_n$. If $|x - y| \ge l_{n-1} - 2l_n$, then

$$A_{p} \leq \frac{|f_{k}^{(i)}(y)|}{|x-y|^{p-i}} + \sum_{t=i}^{p} \frac{|f_{k}^{(t)}(x)|}{(t-i)!} \frac{1}{|x-y|^{p-t}} \leq C_{p}(l_{n} \lambda)^{q-p} \left\{ \left(\frac{l_{n} \lambda}{|x-y|}\right)^{p-i} + \sum_{t=i}^{p} \frac{1}{(t-i)!} \left(\frac{l_{n} \lambda}{|x-y|}\right)^{p-t} \right\}.$$

Since $\alpha_{n-1} = \alpha_{n_k}$ is large and therefore $3l_n \leq l_{n-1}$ we have that $l_n(\lambda + 2) < 3l_n \leq l_{n-1}$, so $l_n \lambda < l_{n-1} - 2l_n \leq |x - y|$ which implies $l_n \lambda/|x - y| < 1$. Thus the expression in $\{ \}$ above is less than 1 + e. Thus $A_p \leq C_p(1 + e)(l_n \lambda)^{q-p}$ and $||f_k||_p \leq 5C_p(l_n \lambda)^{q-p} = 5C_p l_n \lambda$. Since $3l_n \leq l_{n-1}$, we have $l_n < l_{n-1}/2$, and so by [4] Theorem 2, $||f_k||_q \geq q! 2^{-2r} \lambda^q$ and $||f_k||_r \leq C_r$.

Thus for some constant M we have

$$\frac{\|f_k\|_p}{\|f_k\|_q} \left(\frac{\|f_k\|_r}{\|f_k\|_q}\right)^R \le M \frac{l_n \lambda}{\lambda^q} \frac{1}{\lambda^{qR}} = M \frac{l_n}{\lambda^C} =: Q$$

where C = p + (p+1)R. We have $l_n = l_{n-1}^{\alpha_{n-1}} = \ldots = l_{n-s}^{\alpha_{n-s}\cdots\alpha_{n-2}\alpha_{n-1}}$ and so $\lambda = l_{n-s}^{\kappa}$ where

$$\kappa = \alpha_{n-2}\alpha_{n-3}\cdots\alpha_{n-s} + 2\alpha_{n-3}\cdots\alpha_{n-s} + \dots + 2^{s-2}\alpha_{n-s} + 2^{s-1}.$$

So we get $Q = M l_{n-s}^{\alpha_{n-1}\alpha_{n-2}\cdots\alpha_{n-s}-C\kappa}$. Observe that κ is a sum of s terms and each of them is less than $2^{s-1}\alpha_{n-2}\cdots\alpha_{n-s}$. Then

$$\alpha_{n-1}\alpha_{n-2}\dots\alpha_{n-s} - C\kappa = \alpha_{n-2}\dots\alpha_{n-s}(\alpha_{n-1} - Cs2^{s-1}) \to \infty$$

as s is fixed. Thus the exponent of l_{n-s} tends to ∞ and so $Q \to 0$ as $n \to \infty$. Sufficiency. If $\limsup \alpha_n < \infty$, then for some $\alpha < \infty$ we have $\alpha_n \leq \alpha$ for all n. Let p = 0. Given q, let $q_1 = 2q$, r = 4q and $R = \alpha^r + 1$. Fix t > 1 and find n such that $l_{n-r+1} \leq 1/t < l_{n-r}$. Fix $x_0 \in K$ and find intervals $I_{m,j} \subset K_m$ such that

$$x_0 \in I_{n,j_0} \subset I_{n-1,j_1} \subset \ldots \subset I_{n-(r-1),j-(r-1)}.$$

Let x_1 be the end point of I_{n,j_0} which is farther from x_0 . Then clearly $l_n/2 \le |x_1-x_0| \le l_n$. Let x_2 be the end point of I_{n-1,j_1} which is farther from x_0 . Then

$$\frac{l_{n-1}}{2} \le |x_2 - x_0| \le l_{n-1}$$
 and $\frac{l_{n-1}}{2} \le |x_2 - x_1| \le l_{n-1}$

since x_1 and x_2 belong to different intervals $I_{n,j}$ and $I_{n,j'}$ in I_{n-1,j_1} . We continue in this way and choose the points x_1, x_2, \ldots, x_r . Then

$$\frac{l_{n-i+1}}{2} \le |x_i - x_k| \le l_{n-i+1}, \ k = 0, 1, \dots, i-1; \ i = 1, 2, \dots, r.$$

So we can apply Lemma 2 with $\psi_i = l_{n-i+1}$ and for all $k \leq q_1$ obtain

$$|f^{(k)}(x_0)| \le C l_n^{-k} |f|_0 + C l_{n-r+1}^{r-k} ||f||_r$$

Since $l_n = l_{n-1}^{\alpha_{n-1}} = \ldots = l_{n-r}^{\alpha_{n-1}\dots\alpha_{n-r}} \ge l_{n-r}^{\alpha^r} \ge t^{-\alpha^r}$, for all $k \le q_1$ we have

$$|f^{(k)}(x_0)|t^{q_1-k} \leq C_1 t^{\alpha^r k+q_1-k} |f|_0 + \frac{C_2}{t^{r-q_1}} ||f||_r$$

$$\leq C_1 t^{Rq} |f|_0 + \frac{C_2}{t^q} ||f||_r =: S(t).$$

Then as in the last paragraph of the proof of Theorem 3 in [4] we have $||f||_q \leq C_0 S(t)$, which proves the theorem.

In the next theorem we give a necessary and sufficient condition for the space $\mathcal{E}(K)$ to have the property D_{φ}

Theorem 2. Assume $N_n = 2$ for all n and $\lim_{n\to\infty} \alpha_n = \infty$. Then $\mathcal{E}(K)$ has property D_{φ} if and only if the following condition is true:

$$\forall k \; \exists M : \; l_n \ge \varphi^{-M}(l_{n-k}^{-1}) \; \forall n.$$

Proof. Necessity. By D_{φ} we have p. Given k, let $q = 2^{k+1}(p+1) - 1$ and by D_{φ} we choose $r \in \mathbb{N}$, $M \ge 1$ and $C \ge 1$ such that for all $f \in \mathcal{E}(K)$, $f \ne 0$ we have

$$\frac{\|f\|_p}{\|f\|_q}\varphi^M\left(C\frac{\|f\|_r}{\|f\|_q}\right) \ge 1.$$

Let s be such that $2^{s-1} < r \le 2^s$. Fix n large enough and consider the first 2^s intervals of K_n ; $I_{n,1} = [0, l_n], I_{n,2} = [l_{n-1} - l_n, l_{n-1}], \ldots, I_{n,2^s} = [l_{n-s} - l_n, l_{n-s}]$. Let c_j be the midpoint of $I_{n,j}, j = 1, 2, \ldots, 2^s$. Set $f_n(x) = (g(x))^{p+1}$ where

$$g(x) = \begin{cases} \prod_{j=1}^{2^s} (x - c_j) & \text{if } x \in K \cap [0, l_{n-s}] \\ 0 & \text{otherwise.} \end{cases}$$

Then as in Theorem 1, we have $||f||_p \leq 5C_p(l_n\lambda)^{p+1-p} \leq l_n$ for large enough n and $||f||_r \leq C_r$.

Lower bound of $||f_n||_q$. We have $||f_n||_q \ge |f_n|_q \ge |f_n^{(q)}(c_{2^s})|$ and

$$f_n(x) = \prod_{j=1}^{2^s} (x - c_j)^{p+1} = \prod_{i=1}^{(p+1)2^s} (x - b_i)$$

where

$$b_{j(p+1)+1} = b_{j(p+1)+2} = \dots = b_{(j+1)(p+1)} = c_{j+1}, \ j = 0, 1, \dots, 2^s - 1$$

Then

$$f^{(q)}(x) = \sum_{\text{Card}(A) = (p+1)2^s - q} C(A) \prod_{i \in A} (x - b_i)$$

where $A \subset \{1, 2, ..., 2^{s}(p+1)\}, C(A) \geq 1$. Then each term in $f^{(q)}(b_{(p+1)2^{s}}) = f^{(q)}(c_{2^{s}})$ is nonnegative. So

$$|f^{(q)}(c_{2^s})| \ge (c_{2^s} - b_1)(c_{2^s} - b_2) \cdots (c_{2^s} - b_{(p+1)2^s - q}) =: B.$$

Since $(p+1)2^s - q = (p+1)2^s - (2^{k+1}(p+1) - 1) = (p+1)(2^s - 2^{k+1}) + 1$, we have

$$B = (c_{2^{s}} - c_{1})^{p+1} (c_{2^{s}} - c_{2})^{p+1} \cdots (c_{2^{s}} - c_{2^{s} - 2^{k+1}})^{p+1} (c_{2^{s}} - c_{2^{s} - 2^{k+1} + 1}).$$

Note that $2^{s} - 2^{k+1} = 2^{s-1} + 2^{s-2} + \dots + 2^{k+1}$ and

$$\begin{aligned} c_{2^{s}} - c_{1} > c_{2^{s}} - c_{2} > \cdots > c_{2^{s}} - c_{2^{s-1}} &= l_{n-s} - l_{n-(s-1)} > \frac{l_{n-s}}{2} \\ c_{2^{s}} - c_{2^{s-1}+1} > \cdots > c_{2^{s}} - c_{2^{s-1}+2^{s-2}} &= l_{n-(s-1)} - l_{n-(s-2)} > \frac{l_{n-(s-1)}}{2} \\ & \cdots \\ c_{2^{s}} - c_{2^{s-1}+\dots+2^{k+2}+1} > \cdots > c_{2^{s}} - c_{2^{s-1}+\dots+2^{k+2}+2^{k+1}} > \frac{l_{n-(k+2)}}{2} \\ c_{2^{s}} - c_{2^{s}-2^{k+1}+1} &= c_{2^{s}} - c_{2^{s-1}+\dots+2^{k+2}+2^{k+1}+1} > \frac{l_{n-(k+1)}}{2}. \end{aligned}$$

Thus

$$||f||_q \ge B \ge Cl_{n-k-1} \left(l_{n-k-2}^{2^{k+1}} \dots l_{n-s}^{2^{s-1}} \right)^{p+1} \ge Cl_{n-k-1}^{2^s(p+1)} \ge \frac{1}{K} l_{n-k}$$

for large n and any constant K since $l_{n-k} = l_{n-k-1}^{\alpha_{n-k-1}}$ and $\lim_{n\to\infty} \alpha_{n-k-1} \to \infty$. Next we choose K large enough so that the second inequality below holds:

$$1 \le \varphi^M \left(C \frac{\|f\|_r}{\|f\|_q} \right) \frac{\|f\|_p}{\|f\|_q} \le \varphi^M \left(\frac{1}{l_{n-k}} \right) \cdot \frac{l_n \lambda}{l_{n-k}} \le \varphi^M \left(\frac{1}{l_{n-k}} \right) \cdot \frac{l_n}{l_{n-k}} \le \varphi^{M+1} \left(\frac{1}{l_{n-k}} \right) l_n.$$

Thus $l_n \geq \varphi^{-(M+1)}(l_{n-k}^{-1})$ for all large n. By enlarging M+1 if necessary, we have this inequality for all n.

Sufficiency. Suppose that

$$\forall r \; \exists M_r: \; l_n \ge \varphi^{-M_r}(l_{n-r}^{-1}), \; \forall n.$$

Let us take p = 0. Given q, let $q_1 = 2q$, r = 2q + 1 and $M = (M_r + 1)2q$, where M_r is defined by the condition above. Fix t and n such that $l_{n-r+1} \leq 1/t < l_{n-r}$. Fix $f \in \mathcal{E}(K)$.

We can now proceed in a way analogous to the proof of Theorem 1. For $x_0 \in K$, $k \leq q_1$ we have

$$\begin{aligned} f^{(k)}(x_0)| &\leq C_1 l_n^{-k} |f|_0 + C_2 l_{n-r+1}^{r-k} ||f||_r \\ &\leq C_1 \varphi^{M_r k}(t) |f|_0 + C_2 t^{k-r} ||f||_r. \end{aligned}$$

Therefore,

$$\begin{aligned} |f^{(k)}(x_0)| t^{q_1-k} &\leq C_1 \varphi^{(M_r+1)q_1}(t) |f|_0 + C_2 t^{q_1-r} ||f||_r \\ &= C_1 \varphi^M(t) |f|_0 + \frac{C_2}{t} ||f||_r. \end{aligned}$$

From here it is easy to obtain the desired bound

$$||f||_q \le C_1' \varphi^M(t) |f|_0 + \frac{C_2'}{t} ||f||_r$$

where the constants C'_1 , c'_2 depend on t, f. Thus the space $\mathcal{E}(K)$ has the property D_{φ} .

III. The second model case: unbounded (N_n) . Next we consider a compact set $K = K(l, \mathcal{N})$ where $\lim_{n\to\infty} N_n = \infty$. We write

$$K_n = I_{n,1} \cup I_{n,2} \cup \cdots \cup I_{n,N_n} \cup I_{n,N_n+1} \cup \cdots \cup I_{n,N_nN_{n-1}\dots N_1}$$

where the intervals above are pairwise disjoint. Let us denote the distance between $I_{n,1}$ and $I_{n,2}$ by h_n .

Theorem 3. Assume $K = K(l, \mathcal{N})$ where $\lim_{n\to\infty} N_n = \infty$, $l_n < h_n$ and for some $Q \ge 1$, $h_n \ge l_{n-1}^Q$ for all n. Then $\mathcal{E}(K)$ has D_{φ} if and only if the following condition is true:

$$\exists M: \ l_n \ge \varphi^{-M}(l_{n-1}^{-M}), \ \forall n.$$

$$(2)$$

Proof. We will consider the condition

$$\exists M: \ l_n \ge \varphi^{-M}(h_n^{-M}), \ \forall n$$

which is clearly equivalent to (2).

Necessity. By D_{φ} we have p. Let q = p + 1 and find r, R, C such that for all $f \in \mathcal{E}(K)$ we have

$$1 \le \frac{\|f\|_p}{\|f\|_q} \left(C \frac{\|f\|_r}{\|f\|_q} \right)^R$$

Now given n, define

$$f_n(x) = \begin{cases} \frac{x^q}{q!} & \text{if } x \in K \cap [0, l_n] \\ 0 & \text{otherwise} \end{cases}$$

Then it can be easily shown as in the previous theorems that $||f||_p \leq 4l_n$, $||f||_q \geq 1$, $||f||_r \leq 4h_n^{q-r}$. Thus the inequality above holds for $M > \max\{R, r-q\}$. Sufficiency. Let p = 0. Given q let r = q + 2 and $m = \max\{QM(q+1), (QM+1)q\}$. We will show that there are constants \tilde{C}_1 and \tilde{C}_2 such that for all $f \in \mathcal{E}(K)$

$$||f||_q \le \tilde{C}_1 \varphi^m(t^{M+1}) |f|_0 + \frac{\tilde{C}_2}{t} ||f||_r, \ \forall t > 0.$$

This is D_{φ} since M + 1 does not depend on q (see e.g. [3].)

Let n_0 be such that for all $n \ge n_0$ we have $2r < N_n$. Given $t \ge t_0 := \max\{2^M r^M, 1/l_{n_0-1}\}$, we find n such that $l_n < 1/t \le l_{n-1}$. We will apply Lemma 2 in [5]. Let $x_0 \in K$. Then $x_0 \in I_{n,j_0}$. To simplify writing we may assume that $1 \le j_0 \le N_n$.

Case 1. $1/t \ge a$ where a is the left end point of $I_{n,r+1}$.

(i) If $j_0 \leq N_n/2$, we choose x_{μ} as the left end point of $I_{n,j_0+\mu}$. Then $x_0 < x_1 < \cdots < x_r$ and $h = x_1 - x_0 \leq x_2 - x_1 = \cdots = x_r - x_{r-1} = H$, and so by Lemma 2 in [5] we have for $k \leq r$

$$|f^{(k)}(x_0)| \le C_1 h^{-k} |f|_0 + C_2 H^{r-k} ||f||_r.$$

Since $h \ge h_n \ge l_{n-1}^Q \ge 1/t^Q$ and $H = h_n + l_n \le a \le 1/t$ we have

$$|f^{(k)}(x_0)| \le C_1 t^{Qk} |f|_0 + \frac{C_2}{t^{r-k}} ||f||_r \le C_1 \varphi^{QMk}(t^{M+1}) |f|_0 + \frac{C_2}{t^{r-k}} ||f||_r.$$

(*ii*) If $j_0 > N_n/2$, then we choose x_{μ} as the right end point of $I_{n,j_0-\mu}$. Then $x_0 > x_1 > \cdots > x_r$, but Lemma 2 in [5] can be applied and we may proceed as in (*i*).

Case 2. 1/t < a. Then $l_n < 1/t < a$. In this case we choose all the points x_1, x_2, \ldots, x_r in I_{n,j_0} . Since I_{n,j_0} is the union of N_{n+1} intervals $I_{n+1,i}$ and $x_0 \in I_{n+1,i_0}$ for some i_0 , we can choose $x_{\mu} \in I_{n+1,i_0+\mu}$ for all $\mu = 1, 2, \ldots, r$ or $x_{\mu} \in I_{n+1,i_0-\mu}$ for all $\mu = 1, 2, \ldots, r$. Then arguing as above, we see that

$$|f^{(k)}(x_0)| \le C_1 |x_1 - x_0|^{-k} |f|_0 + C_2 |x_r - x_{r-1}|^{r-k} ||f||_r.$$

Since $|x_1 - x_0| \ge h_{n+1} \ge l_n^Q \ge \varphi^{-QM}(h_n^{-M})$ and from $a = r(h_n + l_n) \le 2rh_n$ we get $h_n \ge a/(2r) > 1/(2rt)$ we get $|x_1 - x_0|^{-k} \le \varphi^{QMk}(2^M r^M t^M) \le \varphi^{QMk}(t^{M+1})$. Also $|x_r - x_{r-1}| \le l_n \le 1/t$. Thus for all $k \le r$ and for all $t \ge t_0$ we have

$$|f^{(k)}(x_0)| \le C_1 \varphi^{QMk}(t^{M+1}) |f|_0 + \frac{C_2}{t^{r-k}} ||f||_r.$$

Next we estimate

$$A_q = \frac{|(R_x^q f)^{(k)}(y)|}{|x - y|^{q-k}}, \ x, y \in K, \ x \neq y, \ k \le q.$$

Given $x, y \in K$, $x \neq y$ and $t \ge t_0$, if $|x - y| \ge 1/t$, then

$$\begin{aligned} A_q &\leq \frac{|f^{(k)}(y)|}{|x-y|^{q-k}} + \sum_{i=k}^q \frac{|f^{(i)}(x)|}{(i-k)!} \frac{1}{|x-y|^{q-i}} \\ &\leq C_1 \varphi^{QMk}(t^{M+1}) |f|_0 t^{q-k} + \frac{C_2}{t^{r-k}} ||f||_r t^{q-k} \\ &+ \sum_{i=k}^q C_1 \varphi^{QMi}(t^{M+1}) |f|_0 \frac{t^{q-i}}{(i-k)!} + \sum_{i=k}^q \frac{C_2}{t^{r-i}} ||f||_r \frac{t^{q-i}}{(i-k)!} \\ &\leq C_1 \varphi^{QMq+q}(t^{M+1}) |f|_0 (1+e) + \frac{C_2}{t^{r-q}} ||f||_r (1+e). \end{aligned}$$

If |x - y| < 1/t, then from

$$R_x^q f(y) = R_x^{q+1} f(y) + f^{(q+1)}(x) \frac{(y-x)^{q+1}}{(q+1)!}$$

it follows that

$$A_{q} \leq \|f\|_{q+1}|x-y| + \frac{|f^{(q+1)}(x)|}{(q+1-k)!}|x-y|$$

$$\leq \|f\|_{r}\frac{1}{t} + C_{1}\varphi^{QM(q+1)}(t^{M+1})|f|_{0}\frac{1}{t} + \frac{C_{2}}{t^{r-(q+1)}}\|f\|_{r}\frac{1}{t}$$

Thus we have constants \tilde{C}_1 and \tilde{C}_2 such that for all $f \in \mathcal{E}(K)$

$$||f||_q \le \tilde{C}_1 \varphi^m(t^{M+1}) ||f||_0 + \frac{\tilde{C}_2}{t} ||f||_r$$

and the space $\mathcal{E}(K)$ has the property D_{φ} .

Now we can construct families having the cardinality of the continuum of pairwise nonisomorphic spaces $\mathcal{E}(K)$ for any model type.

Example 1. Let $l_1 = e^{-1}$, $N_n = 2$, $\alpha_n = \exp n^{\lambda}$ with $\lambda > 1$ and K_{λ} denote the corresponding Cantor-type set. Then by Theorem 2 the space $\mathcal{E}(K_{\lambda})$ has the property D_{φ} if and only if

$$\forall k \; \exists M: \; \varphi^M(e^{\alpha_1 \dots \alpha_n}) \ge e^{\alpha_1 \dots \alpha_{n+k}}, \; \forall n.$$
(3)

Let us show that if $\lambda \neq \mu$ then the spaces $\mathcal{E}(K_{\lambda})$ and $\mathcal{E}(K_{\mu})$ are not isomorphic. Given $\lambda < \mu$ let us take ρ with $\lambda/(\lambda+1) < \rho < \mu/(\mu+1)$ and $\varphi(t) = t^{\gamma(t)}$ with $\gamma(t) = \exp \ln^{\rho} \ln t$. Let us show that the space $\mathcal{E}(K_{\lambda})$ has the property D_{φ} whereas $\mathcal{E}(K_{\mu})$ does not have it. Substituting the function φ in (3) gives the condition

$$\forall k \; \exists M : \; M\gamma(e^{\alpha_1 \dots \alpha_n}) \ge \alpha_{n+1} \dots \alpha_{n+k}, \; \forall n$$

$$\ln M + (\ln \alpha_1 + \dots + \ln \alpha_n)^{\rho} \ge \ln \alpha_{n+1} + \dots + \ln \alpha_{n+k}, \ \forall n.$$

Since

$$\frac{n^{\lambda+1}}{\lambda+1} < 1+2^{\lambda}+\dots+n^{\lambda} < \frac{(n+1)^{\lambda+1}}{\lambda+1}$$

and

$$kn^{\lambda} < (n+1)^{\lambda} + \dots + (n+k)^{\lambda} < k2^{\lambda}n^{\lambda}$$
 if $n > k$,

we see that for the space $\mathcal{E}(K_{\lambda})$ the condition above is valid. Suppose that it is valid also for $\mathcal{E}(K_{\mu})$. Then for k = 1 we have M_1 such that

$$\ln M_1 + \left(\frac{n+1}{\mu+1}\right)^{(\mu+1)\rho} \ge n^{\mu}, \ n \to \infty,$$

which is a contradiction as $\rho(\mu + 1) < \mu$. Therefore $\mathcal{E}(K_{\lambda}) \not\cong \mathcal{E}(K_{\mu})$. **Example 2.** Let l_1 , α_n be the same as before but now let $h_n = l_{n-1}^2$. Then $N_n > l_{n-1}/(l_n + h_n) \to \infty$ as $n \to \infty$ and we have the compact set $K_{\lambda} = K((l_n), (N_n))$ satisfying the conditions of Theorem 3. For $\varphi(t) = t^{\gamma(t)}$ we get the following characterization: $\mathcal{E}(K)$ has the property D_{φ} if and only if

$$\exists M: M^2 \gamma(e^{M\alpha_1 \dots \alpha_n}) \ge \alpha_{n+1}, \ \forall n.$$

Let us fix λ, μ, ρ and $\gamma(t)$ as before. We see that the space $\mathcal{E}(K_{\lambda})$ has the property D_{φ} whereas $\mathcal{E}(K_{\mu})$ does not have.

We guess that the invariant D_{φ} is complete for the spaces $\mathcal{E}(K)$ of the first type. On the other hand, for the spaces $\mathcal{E}(K)$ of the second type $(N_n \to \infty)$ it is possible as in [1] to find nonisomorphic spaces which are not distinguishable by the invariant D_{φ} , but can be distinguished by invariants based on the methods of Zahariuta [14], [16], [17], [5].

References

- [1] B. Arslan, A. P. Goncharov, M. Kocatepe, *Isomorphic classification of the spaces of Whitney functions on Cantor-type sets*, in preparation.
- [2] A. Goncharov, *Isomorphic classification of spaces of infinitely differentiable functions*, dissertation, Rostov Univ., 1986 (in Russian).
- [3] A. Goncharov, A compact set without Markov's property but with an extension operator for C^{∞} -functions, Studia Math., **119** (1996), 27 - 35.
- [4] A. Goncharov, Perfect sets of finite class without the extension property, Studia Math., 126 (1997), 161 – 170.

or

- [5] A. Goncharov, M. Kocatepe, *Isomorphic classification of the spaces of Whitney functions*, Mich. J. Math., to appear.
- [6] A. P. Goncharov, V. P. Zahariuta, Linear topological invariants and spaces of infinitely differentiable functions, Math. Analiz i ego priloz., Rostov Univ., (1985), 18-27 (in Russian).
- [7] A. P. Goncharov, V. P. Zahariuta, On the existence of basis in spaces of Whitney functions on special compact sets in ℝ, METU Preprint Series 93/58, Ankara -Turkey.
- [8] M. Tidten, Fortsetzungen von C^{∞} -Funktionen, welche auf einer abgeschlossenen Menge in \mathbb{R}^n definiert sind, manuscripta math., **27** (1979), 291 312.
- [9] M. Tidten, An example of a continuum of pairwise non-isomorphic spaces of C^{∞} functions, Studia Math., **78** (1984), 267 274.
- [10] D. Vogt, Characterisierung der Unterräume von (s), Math. Z., **155** (1977), 109–117.
- [11] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math., 71 (1982), 251 – 270.
- [12] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405 – 443.
- [13] D. Vogt, Some results on continuous linear maps between Fréchet spaces in Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (ed.), 90, North Holland Math. Studies, 1984, 349 - 381.
- [14] V. P. Zahariuta, Linear topological spaces and isomorphisms of spaces of analytic functions, Matem. analiz i ego pril., Rostov-on-Don, Rostov Univ., 2 (1970), 3 13; 3 (1971), 176 180 (in Russian).
- [15] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Centra Vysh. Skoly., 4 (1974), 62-64 (in Russian).
- [16] V. P. Zahariuta, Synthetic diameters and linear topological invariants in: School on theory of operators in functional spaces (abstracts of reports), Minsk (1978), 51-52 (in Russian).
- [17] V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Rostov Univ., 1979 (in Russian); revised English version will appear in Turkish J. Math.

- [18] V. P. Zahariuta, Isomorphism of spaces of analytic functions, Sov. Math. Dokl., 22 (1980), 631 - 634.
- [19] V. P. Zahariuta, On isomorphic classification of F-spaces in: Lecture Notes in Math. 1043 (1984), 34 - 37.