A CONTINUUM OF PAIRWISE NONISOMORPHIC SPACES OF WHITNEY FUNCTIONS ON CANTOR-TYPE SETS

Alexander P. Goncharov, Mefharet Kocatepe
Department of Mathematics, Faculty of Science
Bilkent University, 06533 Bilkent, Ankara, Turkey
goncha@fen.bilkent.edu.tr
kocatepe@fen.bilkent.edu.tr

Abstract

The properties Ω_{2} of Zahariuta (or $\underline{D N}$ of Vogt) and D_{φ} for the space $\mathcal{E}(K)$ of Whitney functions on Cantor type sets are considered. We give a criterion for $\mathcal{E}(K)$ to have these properties for two cases. As application, it is shown that there is a continuum of such spaces which are pairwise non-isomorphic.

I. Introduction.

Let $K \subset \mathbb{R}$ be a perfect compact set. By $\mathcal{E}(K)$ we denote the space of infinitely differentiable Whitney functions on K. This is the space of functions $f: K \rightarrow \mathbb{R}$ extendable to C^{∞}-functions on \mathbb{R} equipped with the topology defined by the sequence of norms

$$
\|f\|_{q}=|f|_{q}+\sup \left\{\frac{\left|\left(R_{y}^{q} f\right)^{(i)}(x)\right|}{|x-y|^{q-i}}: x, y \in K, x \neq y, i \leq q\right\}, q=0,1, \ldots
$$

where $|f|_{q}=\sup \left\{\left|f^{(j)}(x)\right|: x \in K, j \leq q\right\}$ and

$$
R_{y}^{q} f(x)=f(x)-T_{y}^{q} f(x)=f(x)-\sum_{k=0}^{q} \frac{f^{(k)}(y)}{k!}(x-y)^{k}
$$

is the Taylor remainder. With

$$
U_{q}=\left\{f \in \mathcal{E}(K):\|f\|_{q} \leq 1\right\}
$$

the sequence $\left(U_{q}\right)$ needs not to decrease, but the sets εU_{q} with $\varepsilon>0$ and $q \in \mathbb{N}$ constitute a basis of neighborhoods of zero in $\mathcal{E}(K)$. It was shown in [8] by Tidten and in [12] by Vogt that the space $\mathcal{E}(K)$ is isomorphic to the space

$$
s=\left\{x=\left(\xi_{n}\right):\|x\|_{q}=\sum_{n=1}^{\infty}\left|\xi_{n}\right| n^{q}<\infty, \forall q\right\}
$$

of rapidly decreasing sequences if and only if there is a linear continuous extension operator $L: \mathcal{E}(K) \rightarrow C^{\infty}(\mathbb{R})$. By $\mathcal{E}^{r}(K)$ we denote the Banach space of r times differentiable Whitney jets on K equipped with the norm $\|\cdot\|_{r}$.
We denote $\mathbb{N}=\{1,2, \ldots\}$ and $\mathbb{Z}^{+}=\{0,1,2, \ldots\}$. We will consider Cantor type compact sets which are described as follows: let $l=\left(l_{n}\right)_{n=0}^{\infty}$ be a sequence of positive numbers and $\mathcal{N}=\left(N_{n}\right)_{n=1}^{\infty}$ be a sequence of integers $N_{n} \geq 2$ such that $l_{0}=1$ and $N_{n} l_{n}<l_{n-1}$ as well as $4 l_{n} \leq l_{n-1}$. Let $K=K(l, \mathcal{N})$ be the Cantor type set $K=\cap_{n=0}^{\infty} K_{n}$ where $K_{0}=[0,1]=\left[0, l_{0}\right]$ and K_{1} is obtained from K_{0} by deleting $N_{1}-1$ equal open intervals of total length $l_{0}-N_{1} l_{1}$ uniformly. Thus K_{1} is the union of N_{1} closed intervals $I_{1, k}$ each of length l_{1} which are distributed uniformly. In turn K_{n} is a union of $N_{1} N_{2} \ldots N_{n}$ closed intervals $I_{n, k}$ of length l_{n} and K_{n+1} is obtained from K_{n} by deleting uniformly $N_{n+1}-1$ equal open intervals of total length $l_{n}-l_{n+1} N_{n+1}$ from each $I_{n, k}, k=1,2, \ldots, N_{1} N_{2} \ldots N_{n}$. This way for the classical Cantor set we have $l_{n}=3^{-n}$ and $N_{n}=2$. We will consider two cases: (i) $N_{n}=2$ for all n, (ii) $\lim _{n \rightarrow \infty} N_{n}=\infty$.
The following lemma is in [4] (see also [5]).
Lemma 1. Let $g(x)=\prod_{j=1}^{N}\left(x-a_{j}\right)$, where $\left|x-a_{j}\right| \leq l<1, j=1, \ldots, N$. Let $f(x)=g(x)^{q}$. Then for $n \leq N \cdot q$

$$
\left|f^{(n)}(x)\right| \leq C(N, q, n) l^{N \cdot q-n}
$$

If in addition $n<q$, then

$$
\left|f^{(n)}(x)\right| \leq C(N, q, n) \cdot|g(x)|^{q-n}
$$

where

$$
C(N, q, n)=\frac{(N \cdot q)!}{(N \cdot q-n)!} .
$$

The following lemma is a variation of Lemma 2 in [5] with a very similar proof. Hence the proof is omitted.
Lemma 2. Let $K \subset \mathbb{R}$ be a compact set containing $r+1$ distinct points $x_{0}, x_{1}, \ldots, x_{r}$ such that for some finite sequence $0<\psi_{1} \leq \psi_{2} \leq \cdots \leq \psi_{r}$,

$$
\frac{\psi_{i}}{M} \leq\left|x_{i}-x_{k}\right| \leq \psi_{i} \text { for } k=0,1, \ldots, i-1, \quad i=1,2, \ldots, r
$$

Then for all $k \leq r$ and $f \in \mathcal{E}^{r}(K)$

$$
\left|f^{(k)}\left(x_{0}\right)\right| \leq C \psi_{1}^{-k}|f|_{0}+C \psi_{r}^{r-k}\|f\|_{r}
$$

where the constant $C=2 k M^{r} r!/(r-k)$!.
Now we consider a linear topological invariant introduced by Vogt [13] and Tidten [9] (and called $D N_{\varphi}$ by them) and by Goncharov and Zahariuta [2], [19] and [6].

Let $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be an increasing function, $\varphi(t) \geq t$. A Fréchet space X with a fundamental increasing system of seminorms $\left(\|\cdot\|_{p}\right)_{p=0}^{\infty}$ has the property D_{φ} if $\exists p \in$ $\mathbb{Z}_{+} \forall q \in \mathbb{N} \exists r \in \mathbb{N}, m>0, C>0$ such that

$$
\begin{equation*}
\|f\|_{q} \leq \varphi^{m}(t)\|f\|_{p}+\frac{C}{t}\|f\|_{r}, \quad t>0, f \in X \tag{1}
\end{equation*}
$$

We will use as well the multiplicative version of this property (see e.g. [6]):

$$
\exists p \forall q \exists r, m, C: \frac{\|f\|_{p}}{\|f\|_{q}} \varphi^{m}\left(C \frac{\|f\|_{r}}{\|f\|_{q}}\right) \geq 1, \quad \forall f \neq 0
$$

Examples of continua of pairwise non-isomorphic spaces of C^{∞} ([9], [6]) and Whitney ([7], [5]) functions were found by means of these invariants.
The invariant D_{φ} appeared as a generalization of the class D_{1} (see [15]) or the property $D N([10])$. In the case $\varphi(t)=t$ the invariant D_{φ} coincides with $\Omega_{2}([18])$ or $\underline{D N}([11])$. The strong form of the condition (1) with $m=1$ coincides with the property $D N_{\varphi}$ ([13], [9]).
We define $\alpha_{n}=\frac{\ln l_{n+1}}{\ln l_{n}}$. Thus $\alpha_{n}>1$ and $l_{n+1}=l_{n}^{\alpha_{n}}$. In [4] the case $\alpha_{n}=\alpha \neq 2$ was considered. Applying Vogt-Tidten's [8] characterization of the extension property in terms of the invariant $D N$, it was proved in [4] that for the space $\mathcal{E}(K)$ there exists a linear continuous extension operator $L: \mathcal{E}(K) \rightarrow C^{\infty}(\mathbb{R})$ if and only if $\alpha<2$.

II. The first model case: bounded $\left(N_{n}\right)$.

First let us consider the case in which the sequence $\left(N_{n}\right)$ is bounded. Without loss of generality we assume that $N_{n}=2$ since for arbitrary bounded sequence (N_{n}) we can repeat the proof with minor modifications. For the weak property $\underline{D N}$ we have the following geometric characterization.
Theorem 1. Let $N_{n}=2$ for all n. The space $\mathcal{E}(K)$ has property Ω_{2} (or $\underline{D N}$) if and only if $\lim \sup \alpha_{n}<\infty$.
Proof. Necessity. The proof of this part is similar to the proof of Theorem 2 in [4] We assume that $\lim \sup \alpha_{n}=\infty$ and show that

$$
\forall p \exists q \forall r, R \exists\left(f_{k}\right) \subset \mathcal{E}(K): \lim _{k \rightarrow \infty} \frac{\left\|f_{k}\right\|_{p}}{\left\|f_{k}\right\|_{q}}\left(\frac{\left\|f_{k}\right\|_{r}}{\left\|f_{k}\right\|_{q}}\right)^{R}=0
$$

Fix p, let $q=p+1$. Fix r, R such that $q<r$. Find s such that $2^{s-1}<\frac{r}{q} \leq 2^{s}$. Since $\lim \sup \alpha_{n}=\infty$, there is a subsequence $\left(n_{k}\right)$ of integers such that $\alpha_{n_{k}} \nearrow \infty$. Fix k large enough and let $n=n_{k}+1$. Consider the first 2^{s} intervals of $K_{n} ; I_{n, 1}=\left[0, l_{n}\right], I_{n, 2}=$ $\left[l_{n-1}-l_{n}, l_{n-1}\right], \ldots, I_{n, 2^{s}}=\left[l_{n-s}-l_{n}, l_{n-s}\right]$. Let c_{j} be the midpoint of $I_{n, j}, j=1,2, \ldots, 2^{s}$. Set $f_{k}(x)=(g(x))^{q}$ where

$$
g(x)= \begin{cases}\prod_{j=1}^{2^{s}}\left(x-c_{j}\right) & \text { if } x \in K \cap\left[0, l_{n-s}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Upper bound of $\left\|f_{k}\right\|_{p}$. Fix $i \leq p$. As in [4], $\left|f_{k}^{i}(x)\right| \leq C_{p}\left(l_{n} \lambda\right)^{q-i}$ and $\left|f_{k}\right|_{p} \leq C_{p}\left(l_{n} \lambda\right)^{q-p}=$ $C_{p} l_{n} \lambda$ where $\lambda=l_{n-1} l_{n-2}^{2} \cdots l_{n-s}^{2 s-1}$. With

$$
A_{p}:=\frac{\left|\left(R_{x}^{p} f_{k}\right)^{(i)}(y)\right|}{|x-y|^{p-i}}, i \leq p, x \neq y, x, y \in K
$$

we have $A_{p} \leq 2 C_{p} l_{n} \lambda$ if $|x-y|<l_{n-1}-2 l_{n}$. If $|x-y| \geq l_{n-1}-2 l_{n}$, then

$$
\begin{aligned}
A_{p} & \leq \frac{\left|f_{k}^{(i)}(y)\right|}{|x-y|^{p-i}}+\sum_{t=i}^{p} \frac{\left|f_{k}^{(t)}(x)\right|}{(t-i)!} \frac{1}{|x-y|^{p-t}} \\
& \leq C_{p}\left(l_{n} \lambda\right)^{q-p}\left\{\left(\frac{l_{n} \lambda}{|x-y|}\right)^{p-i}+\sum_{t=i}^{p} \frac{1}{(t-i)!}\left(\frac{l_{n} \lambda}{|x-y|}\right)^{p-t}\right\} .
\end{aligned}
$$

Since $\alpha_{n-1}=\alpha_{n_{k}}$ is large and therefore $3 l_{n} \leq l_{n-1}$ we have that $l_{n}(\lambda+2)<3 l_{n} \leq l_{n-1}$, so $l_{n} \lambda<l_{n-1}-2 l_{n} \leq|x-y|$ which implies $l_{n} \lambda /|x-y|<1$. Thus the expression in $\}$ above is less than $1+e$. Thus $A_{p} \leq C_{p}(1+e)\left(l_{n} \lambda\right)^{q-p}$ and $\left\|f_{k}\right\|_{p} \leq 5 C_{p}\left(l_{n} \lambda\right)^{q-p}=5 C_{p} l_{n} \lambda$. Since $3 l_{n} \leq l_{n-1}$, we have $l_{n}<l_{n-1} / 2$, and so by [4] Theorem $2,\left\|f_{k}\right\|_{q} \geq q!2^{-2 r} \lambda^{q}$ and $\left\|f_{k}\right\|_{r} \leq C_{r}$.
Thus for some constant M we have

$$
\frac{\left\|f_{k}\right\|_{p}}{\left\|f_{k}\right\|_{q}}\left(\frac{\left\|f_{k}\right\|_{r}}{\left\|f_{k}\right\|_{q}}\right)^{R} \leq M \frac{l_{n} \lambda}{\lambda^{q}} \frac{1}{\lambda^{q R}}=M \frac{l_{n}}{\lambda^{C}}=: Q
$$

where $C=p+(p+1) R$. We have $l_{n}=l_{n-1}^{\alpha_{n-1}}=\ldots=l_{n-s}^{\alpha_{n-s} \cdots \alpha_{n-2} \alpha_{n-1}}$ and so $\lambda=l_{n-s}^{\kappa}$ where

$$
\kappa=\alpha_{n-2} \alpha_{n-3} \cdots \alpha_{n-s}+2 \alpha_{n-3} \cdots \alpha_{n-s}+\cdots+2^{s-2} \alpha_{n-s}+2^{s-1} .
$$

So we get $Q=M l_{n-s}^{\alpha_{n-1} \alpha_{n-2} \cdots \alpha_{n-s}-C \kappa}$. Observe that κ is a sum of s terms and each of them is less than $2^{s-1} \alpha_{n-2} \cdots \alpha_{n-s}$. Then

$$
\alpha_{n-1} \alpha_{n-2} \ldots \alpha_{n-s}-C \kappa=\alpha_{n-2} \ldots \alpha_{n-s}\left(\alpha_{n-1}-C s 2^{s-1}\right) \rightarrow \infty
$$

as s is fixed. Thus the exponent of l_{n-s} tends to ∞ and so $Q \rightarrow 0$ as $n \rightarrow \infty$.
Sufficiency. If $\lim \sup \alpha_{n}<\infty$, then for some $\alpha<\infty$ we have $\alpha_{n} \leq \alpha$ for all n.
Let $p=0$. Given q, let $q_{1}=2 q, r=4 q$ and $R=\alpha^{r}+1$. Fix $t>1$ and find n such that $l_{n-r+1} \leq 1 / t<l_{n-r}$. Fix $x_{0} \in K$ and find intervals $I_{m, j} \subset K_{m}$ such that

$$
x_{0} \in I_{n, j_{0}} \subset I_{n-1, j_{1}} \subset \ldots \subset I_{n-(r-1), j-(r-1)} .
$$

Let x_{1} be the end point of $I_{n, j_{0}}$ which is farther from x_{0}. Then clearly $l_{n} / 2 \leq\left|x_{1}-x_{0}\right| \leq l_{n}$. Let x_{2} be the end point of $I_{n-1, j_{1}}$ which is farther from x_{0}. Then

$$
\frac{l_{n-1}}{2} \leq\left|x_{2}-x_{0}\right| \leq l_{n-1} \text { and } \frac{l_{n-1}}{2} \leq\left|x_{2}-x_{1}\right| \leq l_{n-1}
$$

since x_{1} and x_{2} belong to different intervals $I_{n, j}$ and $I_{n, j^{\prime}}$ in $I_{n-1, j_{1}}$. We continue in this way and choose the points $x_{1}, x_{2}, \ldots, x_{r}$. Then

$$
\frac{l_{n-i+1}}{2} \leq\left|x_{i}-x_{k}\right| \leq l_{n-i+1}, k=0,1, \ldots, i-1 ; i=1,2, \ldots, r
$$

So we can apply Lemma 2 with $\psi_{i}=l_{n-i+1}$ and for all $k \leq q_{1}$ obtain

$$
\left|f^{(k)}\left(x_{0}\right)\right| \leq C l_{n}^{-k}|f|_{0}+C l_{n-r+1}^{r-k}\|f\|_{r} .
$$

Since $l_{n}=l_{n-1}^{\alpha_{n-1}}=\ldots=l_{n-r}^{\alpha_{n-1} \ldots \alpha_{n-r}} \geq l_{n-r}^{\alpha^{r}} \geq t^{-\alpha^{r}}$, for all $k \leq q_{1}$ we have

$$
\begin{aligned}
\left|f^{(k)}\left(x_{0}\right)\right| t^{q_{1}-k} & \leq C_{1} t^{\alpha^{r} k+q_{1}-k}|f|_{0}+\frac{C_{2}}{t^{r-q_{1}}}\|f\|_{r} \\
& \leq C_{1} t^{R q}|f|_{0}+\frac{C_{2}}{t^{q}}\|f\|_{r}=: S(t)
\end{aligned}
$$

Then as in the last paragraph of the proof of Theorem 3 in [4] we have $\|f\|_{q} \leq C_{0} S(t)$, which proves the theorem.

In the next theorem we give a necessary and sufficient condition for the space $\mathcal{E}(K)$ to have the property D_{φ}
Theorem 2. Assume $N_{n}=2$ for all n and $\lim _{n \rightarrow \infty} \alpha_{n}=\infty$. Then $\mathcal{E}(K)$ has property D_{φ} if and only if the following condition is true:

$$
\forall k \exists M: \quad l_{n} \geq \varphi^{-M}\left(l_{n-k}^{-1}\right) \quad \forall n
$$

Proof. Necessity. By D_{φ} we have p. Given k, let $q=2^{k+1}(p+1)-1$ and by D_{φ} we choose $r \in \mathbb{N}, M \geq 1$ and $C \geq 1$ such that for all $f \in \mathcal{E}(K), f \neq 0$ we have

$$
\frac{\|f\|_{p}}{\|f\|_{q}} \varphi^{M}\left(C \frac{\|f\|_{r}}{\|f\|_{q}}\right) \geq 1
$$

Let s be such that $2^{s-1}<r \leq 2^{s}$. Fix n large enough and consider the first 2^{s} intervals of $K_{n} ; I_{n, 1}=\left[0, l_{n}\right], I_{n, 2}=\left[l_{n-1}-l_{n}, l_{n-1}\right], \ldots, I_{n, 2^{s}}=\left[l_{n-s}-l_{n}, l_{n-s}\right]$. Let c_{j} be the midpoint of $I_{n, j}, j=1,2, \ldots, 2^{s}$. Set $f_{n}(x)=(g(x))^{p+1}$ where

$$
g(x)= \begin{cases}\prod_{j=1}^{2^{s}}\left(x-c_{j}\right) & \text { if } x \in K \cap\left[0, l_{n-s}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Then as in Theorem 1, we have $\|f\|_{p} \leq 5 C_{p}\left(l_{n} \lambda\right)^{p+1-p} \leq l_{n}$ for large enough n and $\|f\|_{r} \leq C_{r}$.
Lower bound of $\left\|f_{n}\right\|_{q}$. We have $\left\|f_{n}\right\|_{q} \geq\left|f_{n}\right|_{q} \geq\left|f_{n}^{(q)}\left(c_{2^{s}}\right)\right|$ and

$$
f_{n}(x)=\prod_{j=1}^{2^{s}}\left(x-c_{j}\right)^{p+1}=\prod_{i=1}^{(p+1) 2^{s}}\left(x-b_{i}\right)
$$

where

$$
b_{j(p+1)+1}=b_{j(p+1)+2}=\ldots=b_{(j+1)(p+1)}=c_{j+1}, \quad j=0,1, \ldots, 2^{s}-1
$$

Then

$$
f^{(q)}(x)=\sum_{\operatorname{Card}(A)=(p+1) 2^{s}-q} C(A) \prod_{i \in A}\left(x-b_{i}\right)
$$

where $A \subset\left\{1,2, \ldots, 2^{s}(p+1)\right\}, C(A) \geq 1$. Then each term in $f^{(q)}\left(b_{(p+1) 2^{s}}\right)=f^{(q)}\left(c_{2^{s}}\right)$ is nonnegative. So

$$
\left|f^{(q)}\left(c_{2^{s}}\right)\right| \geq\left(c_{2^{s}}-b_{1}\right)\left(c_{2^{s}}-b_{2}\right) \cdots\left(c_{2^{s}}-b_{(p+1) 2^{s}-q}\right)=: B
$$

Since $(p+1) 2^{s}-q=(p+1) 2^{s}-\left(2^{k+1}(p+1)-1\right)=(p+1)\left(2^{s}-2^{k+1}\right)+1$, we have

$$
B=\left(c_{2^{s}}-c_{1}\right)^{p+1}\left(c_{2^{s}}-c_{2}\right)^{p+1} \cdots\left(c_{2^{s}}-c_{2^{s}-2^{k+1}}\right)^{p+1}\left(c_{2^{s}}-c_{2^{s}-2^{k+1}+1}\right) .
$$

Note that $2^{s}-2^{k+1}=2^{s-1}+2^{s-2}+\cdots+2^{k+1}$ and

$$
\begin{aligned}
c_{2^{s}}-c_{1}>c_{2^{s}}-c_{2}>\cdots>c_{2^{s}}-c_{2^{s-1}}=l_{n-s}-l_{n-(s-1)} & >\frac{l_{n-s}}{2} \\
c_{2^{s}}-c_{2^{s-1}+1}>\cdots>c_{2^{s}}-c_{2^{s-1}+2^{s-2}}=l_{n-(s-1)}-l_{n-(s-2)} & >\frac{l_{n-(s-1)}}{2} \\
\cdots & \\
c_{2^{s}}-c_{2^{s-1}+\cdots+2^{k+2}+1}>\cdots>c_{2^{s}}-c_{2^{s-1}+\cdots+2^{k+2}+2^{k+1}} & >\frac{l_{n-(k+2)}}{2} \\
c_{2^{s}}-c_{2^{s}-2^{k+1}+1}=c_{2^{s}}-c_{2^{s-1}+\cdots+2^{k+2}+2^{k+1}+1} & >\frac{l_{n-(k+1)}}{2} .
\end{aligned}
$$

Thus

$$
\|f\|_{q} \geq B \geq C l_{n-k-1}\left(l_{n-k-2}^{2^{k+1}} \ldots l_{n-s}^{2^{s-1}}\right)^{p+1} \geq C l_{n-k-1}^{2^{s}(p+1)} \geq \frac{1}{K} l_{n-k}
$$

for large n and any constant K since $l_{n-k}=l_{n-k-1}^{\alpha_{n-k-1}}$ and $\lim _{n \rightarrow \infty} \alpha_{n-k-1} \rightarrow \infty$. Next we choose K large enough so that the second inequality below holds:

$$
1 \leq \varphi^{M}\left(C \frac{\|f\|_{r}}{\|f\|_{q}}\right) \frac{\|f\|_{p}}{\|f\|_{q}} \leq \varphi^{M}\left(\frac{1}{l_{n-k}}\right) \cdot \frac{l_{n} \lambda}{l_{n-k}} \leq \varphi^{M}\left(\frac{1}{l_{n-k}}\right) \cdot \frac{l_{n}}{l_{n-k}} \leq \varphi^{M+1}\left(\frac{1}{l_{n-k}}\right) l_{n} .
$$

Thus $l_{n} \geq \varphi^{-(M+1)}\left(l_{n-k}^{-1}\right)$ for all large n. By enlarging $M+1$ if necessary, we have this inequality for all n.
Sufficiency. Suppose that

$$
\forall r \exists M_{r}: l_{n} \geq \varphi^{-M_{r}}\left(l_{n-r}^{-1}\right), \forall n
$$

Let us take $p=0$. Given q, let $q_{1}=2 q, r=2 q+1$ and $M=\left(M_{r}+1\right) 2 q$, where M_{r} is defined by the condition above. Fix t and n such that $l_{n-r+1} \leq 1 / t<l_{n-r}$. Fix $f \in \mathcal{E}(K)$.

We can now proceed in a way analogous to the proof of Theorem 1. For $x_{0} \in K, k \leq q_{1}$ we have

$$
\begin{aligned}
\left|f^{(k)}\left(x_{0}\right)\right| & \leq C_{1} l_{n}^{-k}|f|_{0}+C_{2} l_{n-r+1}^{r-k}\|f\|_{r} \\
& \leq C_{1} \varphi^{M_{r} k}(t)|f|_{0}+C_{2} t^{k-r}\|f\|_{r}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|f^{(k)}\left(x_{0}\right)\right| t^{q_{1}-k} & \leq C_{1} \varphi^{\left(M_{r}+1\right) q_{1}}(t)|f|_{0}+C_{2} t^{q_{1}-r}\|f\|_{r} \\
& =C_{1} \varphi^{M}(t)|f|_{0}+\frac{C_{2}}{t}\|f\|_{r}
\end{aligned}
$$

¿From here it is easy to obtain the desired bound

$$
\|f\|_{q} \leq C_{1}^{\prime} \varphi^{M}(t)|f|_{0}+\frac{C_{2}^{\prime}}{t}\|f\|_{r}
$$

where the constants $C_{1}^{\prime}, c_{2}^{\prime}$ depend on t, f. Thus the space $\mathcal{E}(K)$ has the property D_{φ}.
III. The second model case: unbounded $\left(N_{n}\right)$.

Next we consider a compact set $K=K(l, \mathcal{N})$ where $\lim _{n \rightarrow \infty} N_{n}=\infty$. We write

$$
K_{n}=I_{n, 1} \cup I_{n, 2} \cup \cdots I_{n, N_{n}} \cup I_{n, N_{n}+1} \cup \cdots \cup I_{n, N_{n} N_{n-1} \ldots N_{1}}
$$

where the intervals above are pairwise disjoint. Let us denote the distance between $I_{n, 1}$ and $I_{n, 2}$ by h_{n}.
Theorem 3. Assume $K=K(l, \mathcal{N})$ where $\lim _{n \rightarrow \infty} N_{n}=\infty, l_{n}<h_{n}$ and for some $Q \geq 1$, $h_{n} \geq l_{n-1}^{Q}$ for all n. Then $\mathcal{E}(K)$ has D_{φ} if and only if the following condition is true:

$$
\begin{equation*}
\exists M: \quad l_{n} \geq \varphi^{-M}\left(l_{n-1}^{-M}\right), \forall n \tag{2}
\end{equation*}
$$

Proof. We will consider the condition

$$
\exists M: \quad l_{n} \geq \varphi^{-M}\left(h_{n}^{-M}\right), \forall n
$$

which is clearly equivalent to (2).
Necessity. By D_{φ} we have p. Let $q=p+1$ and find r, R, C such that for all $f \in \mathcal{E}(K)$ we have

$$
1 \leq \frac{\|f\|_{p}}{\|f\|_{q}}\left(C \frac{\|f\|_{r}}{\|f\|_{q}}\right)^{R}
$$

Now given n, define

$$
f_{n}(x)= \begin{cases}\frac{x^{q}}{q!} & \text { if } x \in K \cap\left[0, l_{n}\right] \\ 0 & \text { otherwise }\end{cases}
$$

Then it can be easily shown as in the previous theorems that $\|f\|_{p} \leq 4 l_{n},\|f\|_{q} \geq$ $1,\|f\|_{r} \leq 4 h_{n}^{q-r}$. Thus the inequality above holds for $M>\max \{R, r-q\}$.
Sufficiency. Let $p=0$. Given q let $\underset{\sim}{r}=q+2$ and $m=\max \{Q M(q+1),(Q M+1) q\}$. We will show that there are constants \tilde{C}_{1} and \tilde{C}_{2} such that for all $f \in \mathcal{E}(K)$

$$
\|f\|_{q} \leq \tilde{C}_{1} \varphi^{m}\left(t^{M+1}\right)|f|_{0}+\frac{\tilde{C}_{2}}{t}\|f\|_{r}, \forall t>0
$$

This is D_{φ} since $M+1$ does not depend on q (see e.g. [3].)
Let n_{0} be such that for all $n \geq n_{0}$ we have $2 r<N_{n}$. Given $t \geq t_{0}:=\max \left\{2^{M} r^{M}, 1 / l_{n_{0}-1}\right\}$, we find n such that $l_{n}<1 / t \leq l_{n-1}$. We will apply Lemma 2 in [5]. Let $x_{0} \in K$. Then $x_{0} \in I_{n, j_{0}}$. To simplify writing we may assume that $1 \leq j_{0} \leq N_{n}$.
Case 1. $1 / t \geq a$ where a is the left end point of $I_{n, r+1}$.
(i) If $j_{0} \leq N_{n} / 2$, we choose x_{μ} as the left end point of $I_{n, j_{0}+\mu}$. Then $x_{0}<x_{1}<\cdots<x_{r}$ and $h=x_{1}-x_{0} \leq x_{2}-x_{1}=\cdots=x_{r}-x_{r-1}=H$, and so by Lemma 2 in [5] we have for $k \leq r$

$$
\left|f^{(k)}\left(x_{0}\right)\right| \leq C_{1} h^{-k}|f|_{0}+C_{2} H^{r-k}\|f\|_{r}
$$

Since $h \geq h_{n} \geq l_{n-1}^{Q} \geq 1 / t^{Q}$ and $H=h_{n}+l_{n} \leq a \leq 1 / t$ we have

$$
\left|f^{(k)}\left(x_{0}\right)\right| \leq C_{1} t^{Q k}|f|_{0}+\frac{C_{2}}{t^{r-k}}\|f\|_{r} \leq C_{1} \varphi^{Q M k}\left(t^{M+1}\right)|f|_{0}+\frac{C_{2}}{t^{r-k}}\|f\|_{r}
$$

(ii) If $j_{0}>N_{n} / 2$, then we choose x_{μ} as the right end point of $I_{n, j_{0}-\mu}$. Then $x_{0}>x_{1}>$ $\cdots>x_{r}$, but Lemma 2 in [5] can be applied and we may proceed as in (i).
Case 2. $1 / t<a$. Then $l_{n}<1 / t<a$. In this case we choose all the points $x_{1}, x_{2}, \ldots, x_{r}$ in $I_{n, j_{0}}$. Since $I_{n, j_{0}}$ is the union of N_{n+1} intervals $I_{n+1, i}$ and $x_{0} \in I_{n+1, i_{0}}$ for some i_{0}, we can choose $x_{\mu} \in I_{n+1, i_{0}+\mu}$ for all $\mu=1,2, \ldots, r$ or $x_{\mu} \in I_{n+1, i_{0}-\mu}$ for all $\mu=1,2, \ldots, r$. Then arguing as above, we see that

$$
\left|f^{(k)}\left(x_{0}\right)\right| \leq C_{1}\left|x_{1}-x_{0}\right|^{-k}|f|_{0}+C_{2}\left|x_{r}-x_{r-1}\right|^{r-k}\|f\|_{r}
$$

Since $\left|x_{1}-x_{0}\right| \geq h_{n+1} \geq l_{n}^{Q} \geq \varphi^{-Q M}\left(h_{n}^{-M}\right)$ and from $a=r\left(h_{n}+l_{n}\right) \leq 2 r h_{n}$ we get $h_{n} \geq a /(2 r)>1 /(2 r t)$ we get $\left|x_{1}-x_{0}\right|^{-k} \leq \varphi^{Q M k}\left(2^{M} r^{M} t^{M}\right) \leq \varphi^{Q M k}\left(t^{M+1}\right)$. Also $\left|x_{r}-x_{r-1}\right| \leq l_{n} \leq 1 / t$. Thus for all $k \leq r$ and for all $t \geq t_{0}$ we have

$$
\left|f^{(k)}\left(x_{0}\right)\right| \leq C_{1} \varphi^{Q M k}\left(t^{M+1}\right)|f|_{0}+\frac{C_{2}}{t^{r-k}}\|f\|_{r}
$$

Next we estimate

$$
A_{q}=\frac{\left|\left(R_{x}^{q} f\right)^{(k)}(y)\right|}{|x-y|^{q-k}}, x, y \in K, x \neq y, k \leq q
$$

Given $x, y \in K, x \neq y$ and $t \geq t_{0}$, if $|x-y| \geq 1 / t$, then

$$
\begin{aligned}
A_{q} & \leq \frac{\left|f^{(k)}(y)\right|}{|x-y|^{q-k}}+\sum_{i=k}^{q} \frac{\left|f^{(i)}(x)\right|}{(i-k)!} \frac{1}{|x-y|^{q-i}} \\
& \leq C_{1} \varphi^{Q M k}\left(t^{M+1}\right)|f|_{0} t^{q-k}+\frac{C_{2}}{t^{r-k}}\|f\|_{r} t^{q-k} \\
& +\sum_{i=k}^{q} C_{1} \varphi^{Q M i}\left(t^{M+1}\right)|f|_{0} \frac{t^{q-i}}{(i-k)!}+\sum_{i=k}^{q} \frac{C_{2}}{t^{r-i}}\|f\|_{r} \frac{t^{q-i}}{(i-k)!} \\
& \leq C_{1} \varphi^{Q M q+q}\left(t^{M+1}\right)|f|_{0}(1+e)+\frac{C_{2}}{t^{r-q}}\|f\|_{r}(1+e) .
\end{aligned}
$$

If $|x-y|<1 / t$, then from

$$
R_{x}^{q} f(y)=R_{x}^{q+1} f(y)+f^{(q+1)}(x) \frac{(y-x)^{q+1}}{(q+1)!}
$$

it follows that

$$
\begin{aligned}
A_{q} & \leq\|f\|_{q+1}|x-y|+\frac{\left|f^{(q+1)}(x)\right|}{(q+1-k)!}|x-y| \\
& \leq\|f\|_{r} \frac{1}{t}+C_{1} \varphi^{Q M(q+1)}\left(t^{M+1}\right)|f|_{0} \frac{1}{t}+\frac{C_{2}}{t^{r-(q+1)}}\|f\|_{r} \frac{1}{t}
\end{aligned}
$$

Thus we have constants \tilde{C}_{1} and \tilde{C}_{2} such that for all $f \in \mathcal{E}(K)$

$$
\|f\|_{q} \leq \tilde{C}_{1} \varphi^{m}\left(t^{M+1}\right)\|f\|_{0}+\frac{\tilde{C}_{2}}{t}\|f\|_{r}
$$

and the space $\mathcal{E}(K)$ has the property D_{φ}.
Now we can construct families having the cardinality of the continuum of pairwise nonisomorphic spaces $\mathcal{E}(K)$ for any model type.
Example 1. Let $l_{1}=e^{-1}, N_{n}=2, \alpha_{n}=\exp n^{\lambda}$ with $\lambda>1$ and K_{λ} denote the corresponding Cantor-type set. Then by Theorem 2 the space $\mathcal{E}\left(K_{\lambda}\right)$ has the property D_{φ} if and only if

$$
\begin{equation*}
\forall k \exists M: \varphi^{M}\left(e^{\alpha_{1} \ldots \alpha_{n}}\right) \geq e^{\alpha_{1} \ldots \alpha_{n+k}}, \forall n \tag{3}
\end{equation*}
$$

Let us show that if $\lambda \neq \mu$ then the spaces $\mathcal{E}\left(K_{\lambda}\right)$ and $\mathcal{E}\left(K_{\mu}\right)$ are not isomorphic. Given $\lambda<\mu$ let us take ρ with $\lambda /(\lambda+1)<\rho<\mu /(\mu+1)$ and $\varphi(t)=t^{\gamma(t)}$ with $\gamma(t)=\exp \ln ^{\rho} \ln t$. Let us show that the space $\mathcal{E}\left(K_{\lambda}\right)$ has the property D_{φ} whereas $\mathcal{E}\left(K_{\mu}\right)$ does not have it. Substituting the function φ in (3) gives the condition

$$
\forall k \exists M: M \gamma\left(e^{\alpha_{1} \ldots \alpha_{n}}\right) \geq \alpha_{n+1} \ldots \alpha_{n+k}, \forall n
$$

or

$$
\ln M+\left(\ln \alpha_{1}+\cdots+\ln \alpha_{n}\right)^{\rho} \geq \ln \alpha_{n+1}+\cdots+\ln \alpha_{n+k}, \forall n .
$$

Since

$$
\frac{n^{\lambda+1}}{\lambda+1}<1+2^{\lambda}+\cdots+n^{\lambda}<\frac{(n+1)^{\lambda+1}}{\lambda+1}
$$

and

$$
k n^{\lambda}<(n+1)^{\lambda}+\cdots+(n+k)^{\lambda}<k 2^{\lambda} n^{\lambda} \text { if } n>k
$$

we see that for the space $\mathcal{E}\left(K_{\lambda}\right)$ the condition above is valid. Suppose that it is valid also for $\mathcal{E}\left(K_{\mu}\right)$. Then for $k=1$ we have M_{1} such that

$$
\ln M_{1}+\left(\frac{n+1}{\mu+1}\right)^{(\mu+1) \rho} \geq n^{\mu}, n \rightarrow \infty
$$

which is a contradiction as $\rho(\mu+1)<\mu$. Therefore $\mathcal{E}\left(K_{\lambda}\right) \not \not 二 \mathcal{E}\left(K_{\mu}\right)$.
Example 2. Let l_{1}, α_{n} be the same as before but now let $h_{n}=l_{n-1}^{2}$. Then $N_{n}>$ $l_{n-1} /\left(l_{n}+h_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and we have the compact set $K_{\lambda}=K\left(\left(l_{n}\right),\left(N_{n}\right)\right)$ satisfying the conditions of Theorem 3. For $\varphi(t)=t^{\gamma(t)}$ we get the following characterization: $\mathcal{E}(K)$ has the property D_{φ} if and only if

$$
\exists M: M^{2} \gamma\left(e^{M \alpha_{1} \ldots \alpha_{n}}\right) \geq \alpha_{n+1}, \forall n
$$

Let us fix λ, μ, ρ and $\gamma(t)$ as before. We see that the space $\mathcal{E}\left(K_{\lambda}\right)$ has the property D_{φ} whereas $\mathcal{E}\left(K_{\mu}\right)$ does not have.
We guess that the invariant D_{φ} is complete for the spaces $\mathcal{E}(K)$ of the first type. On the other hand, for the spaces $\mathcal{E}(K)$ of the second type $\left(N_{n} \rightarrow \infty\right)$ it is possible as in [1] to find nonisomorphic spaces which are not distinguishable by the invariant D_{φ}, but can be distinguished by invariants based on the methods of Zahariuta [14], [16], [17], [5].

References

[1] B. Arslan, A. P. Goncharov, M. Kocatepe, Isomorphic classification of the spaces of Whitney functions on Cantor-type sets, in preparation.
[2] A. Goncharov, Isomorphic classification of spaces of infinitely differentiable functions, dissertation, Rostov Univ., 1986 (in Russian).
[3] A. Goncharov, A compact set without Markov's property but with an extension operator for C^{∞}-functions, Studia Math., 119 (1996), $27-35$.
[4] A. Goncharov, Perfect sets of finite class without the extension property, Studia Math., 126 (1997), 161 - 170.
[5] A. Goncharov, M. Kocatepe, Isomorphic classification of the spaces of Whitney functions, Mich. J. Math., to appear.
[6] A. P. Goncharov, V. P. Zahariuta, Linear topological invariants and spaces of infinitely differentiable functions, Math. Analiz i ego priloz., Rostov Univ., (1985), 18-27 (in Russian).
[7] A. P. Goncharov, V. P. Zahariuta, On the existence of basis in spaces of Whitney functions on special compact sets in \mathbb{R}, METU Preprint Series 93/58, Ankara Turkey.
[8] M. Tidten, Fortsetzungen von C^{∞}-Funktionen, welche auf einer abgeschlossenen Menge in \mathbb{R}^{n} definiert sind, manuscripta math., 27 (1979), 291 - 312.
[9] M. Tidten, An example of a continuum of pairwise non-isomorphic spaces of C^{∞} functions, Studia Math., 78 (1984), 267 - 274.
[10] D. Vogt, Characterisierung der Unterräume von (s), Math. Z., 155 (1977), 109-117.
[11] D. Vogt, Charakterisierung der Unterräume eines nuklearen stabilen Potenzreihenraumes von endlichem Typ, Studia Math., 71 (1982), 251 - 270.
[12] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443.
[13] D. Vogt, Some results on continuous linear maps between Fréchet spaces in Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (ed.), 90, North Holland Math. Studies, 1984, 349 - 381.
[14] V. P. Zahariuta, Linear topological spaces and isomorphisms of spaces of analytic functions, Matem. analiz i ego pril., Rostov-on-Don, Rostov Univ., 2 (1970), 3 - 13; 3 (1971), 176 - 180 (in Russian).
[15] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Sev. Kavkaz. Nauch. Centra Vysh. Skoly., 4 (1974), 62-64 (in Russian).
[16] V. P. Zahariuta, Synthetic diameters and linear topological invariants in: School on theory of operators in functional spaces (abstracts of reports), Minsk (1978), 51-52 (in Russian).
[17] V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Rostov Univ., 1979 (in Russian); revised English version will appear in Turkish J. Math.
[18] V. P. Zahariuta, Isomorphism of spaces of analytic functions, Sov. Math. Dokl., 22 (1980), $631-634$.
[19] V. P. Zahariuta, On isomorphic classification of F-spaces in: Lecture Notes in Math. 1043 (1984), $34-37$.

